Skip to main content

Tumor Development Under Combination Treatments with Anti-angiogenic Therapies

  • Chapter
  • First Online:
Book cover Mathematical Methods and Models in Biomedicine

Abstract

Tumors are a family of high-mortality diseases, each differing from the other, but all exhibiting a derangement of cellular proliferation and characterized by a remarkable lack of symptoms [52] and by time courses that, in a broad sense, may be classified as nonlinear. As a consequence, despite the enormous strides in prevention and, to a certain extent, cure, cancer is one of the leading causes of death worldwide, and, unfortunately, is likely to remain so for many years to come [4, 53].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agur, Z., Arakelyan, L., Daugulis, P., Ginosar, Y.: Hopf point analysis for angiogenesis models. Discrete Continuous Dyn. Syst. B 4, 29–38 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anderson, A.R.A., Chaplain, M.A.: Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60, 857–899 (1998)

    Article  MATH  Google Scholar 

  3. Bellomo, N., Maini, P.K.: Introduction to “special issue on cancer modelling’. Math. Models Meth. Appl. Sci. 15, iii (2005)

    Google Scholar 

  4. Boyle, P., d’Onofrio, A., Maisonneuve, P., Severi, G., Robertson, C., Tubiana, M., Veronesi, U.: Measuring progress against cancer in Europe: has the 15% decline targeted for 2000 come about? Ann. Oncol. 14, 1312–1325 (2003)

    Google Scholar 

  5. Brenner, D.J., Hall, E.J., Huang, Y., Sachs, R.K.: Optimizing the time course of brachytherapy and other accelerated radiotherapeutic protocols. Int. J. Radiat. Oncol. Biol. Phys. 29, 893–901 (1994)

    Article  Google Scholar 

  6. Browder, T., Butterfield, C.E., Kraling, B.M., Shi, B., Marshall, B., O’Reilly, M.S., Folkman, J.: Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Canc. Res. 60, 1878–86 (2000)

    Google Scholar 

  7. Colleoni, M., Rocca, A., Sandri, M.T., Zorzino, L., Masci, G., Nole, F., Peruzzotti, G., Robertson, C., Orlando, L., Cinieri, S., de Braud, F., Viale, G., Goldhirsch, A.: Low-dose oral methotrexate and cyclophosphamide in metastatic breast cancer: antitumour activity and correlation with vascular endothelial growth factor levels. Ann. Oncol. 13, 73–80 (2002)

    Article  Google Scholar 

  8. Ergun, A., Camphausen, K., Wein, L.M., Optimal scheduling of radiotherapy and angiogenic inhibitors, Bull. of Math. Biology, 65, 407–424 (2003)

    Article  Google Scholar 

  9. Folkman, J.: Tumor angiogenesis: Therapeutic implications. New Engl. J. Med. 295, 1182–1196 (1971)

    Google Scholar 

  10. Folkman, J.: Antiangiogenesis: New concept for therapy of solid tumors. Ann. Surg. 175, 409–416 (1972)

    Article  Google Scholar 

  11. Folkman, J.: Opinion - Angiogenesis: an organizing principle for drug discovery? Nature Rev. Drug. Disc. 6, 273–286 (2007)

    Article  Google Scholar 

  12. Fowler, J.F.: The linear-quadratic formula and progress in fractionated radiotherapy, Br. J. Radiol. 62, 679–694 (1989)

    Article  Google Scholar 

  13. Frame, D.: New strategies in controlling drug resistance. J. Manag. Care Pharm. 13, 13–17 (2007)

    Google Scholar 

  14. Goldie, J.H., Coldman, A.J.: A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Canc. Treat. Rep. 63, 1727–1733 (1979)

    Google Scholar 

  15. Guiot, C., Degiorgis, P.G., Delsanto, P.P., Gabriele, P., Deisboecke, T.S.: Does tumor growth follow a ’universal law’? J. Theor. Biol. 225, 147–151 (2003)

    Article  Google Scholar 

  16. Hahnfeldt, P., Panigrahy, D., Folkman, J., Hlatky, L.: Tumor development under angiogenic signaling: A dynamical theory of tumor growth, treatment response, and postvascular dormancy. Canc. Res. 59, 4770–4775 (1999)

    Google Scholar 

  17. Hart, D., Shochat, E., Agur, Z.: The growth law of primary breast cancer as inferred from mammography screening trials data. Br. J. Canc. 78, 382–387 (1999)

    Article  Google Scholar 

  18. Jain, R.K., Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med. 7, 987–989 (2001)

    Article  Google Scholar 

  19. Jain, R.K., Munn, L.L.: Vascular normalization as a rationale for combining chemotherapy with antiangiogenic agents. Princ. Practical Oncol. 21, 1–7 (2007)

    Google Scholar 

  20. Kerbel, R.S.: A cancer therapy resistant to resistance. Nature 390, 335–336 (1997)

    Article  Google Scholar 

  21. Kerbel, R.S.: Tumor angiogenesis: Past, present and near future. Carcinogensis 21, 505–515 (2000)

    Article  Google Scholar 

  22. Kerbel, R., Folkman, J.: Clinical translation of angiogenesis inhibitors. Nat. Rev. Canc. 2, 727–739 (2002)

    Article  Google Scholar 

  23. Kimmel, M., Swierniak, A.: Control theory approach to cancer chemotherapy: benefiting from phase dependence and overcoming drug resistance. In: Tutorials in Mathematical Bioscences III: Cell Cycle, Proliferation, and Cancer, Lecture Notes in Mathematics, vol. 1872, pp. 185–221. Springer, Berlin (2006)

    Google Scholar 

  24. Ledzewicz, U., Schättler, H.: Optimal bang-bang controls for a 2-compartment model in cancer chemotherapy. J. Optim. Theor. Appl. - JOTA 114, 609–637 (2002)

    Article  MATH  Google Scholar 

  25. Ledzewicz, U., Schättler, H.: Analysis of a cell-cycle specific model for cancer chemotherapy, J. Biol. Syst. 10, 183–206 (2002)

    Article  MATH  Google Scholar 

  26. Ledzewicz, U., Schättler, H.: Anti-angiogenic therapy in cancer treatment as an optimal control problem, SIAM J. Contr. Optim. 46(3), 1052–1079 (2007)

    Article  MATH  Google Scholar 

  27. Ledzewicz, U., Schättler, H.: Optimal and suboptimal protocols for a class of mathematical models of tumor anti-angiogenesis. J. Theor. Biol. 252, 295–312 (2008)

    Article  Google Scholar 

  28. Ledzewicz, U., Schättler, H.: Singular controls and chattering arcs in optimal control problems arising in biomedicine. Contr. Cybern. 38, 1501–1523 (2009)

    MATH  Google Scholar 

  29. Ledzewicz, U., Schättler, H.: Multi-input optimal control problems for combined tumor anti-angiogenic and radiotherapy treatments. J. Optim. Theor. Appl. - JOTA 153, 195–224 (2012), doi:10.1007/s10957-011-9954-8, published online: 16 November 2011

    Article  MATH  Google Scholar 

  30. Ledzewicz, U., Munden, J., Schättler, H.: Scheduling of anti-angiogenic inhibitors for Gompertzian and logistic tumor growth models. Discrete Continuous Dyn. Syst. Ser. B 12, 415–439 (2009)

    Article  MATH  Google Scholar 

  31. Ledzewicz, U., Marriott, J., Maurer, H., Schättler, H.: Realizable protocols for optimal administration of drugs in mathematical models for novel cancer treatments. Math. Med. Biol. 27, 157–179 (2010), doi:10.1093/imammb/dqp012

    Article  MathSciNet  MATH  Google Scholar 

  32. Ledzewicz, U., Maurer, H., Schättler, H.: Minimizing tumor volume for a mathematical model of anti-angiogenesis with linear pharmacokinetics. In: Diehl, M., Glineur, F., Jarlebring, E., Michiels, W. (eds.) Recent Advances in Optimization and its Applications in Engineering, pp. 267–276. Springer, Berlin (2010)

    Chapter  Google Scholar 

  33. Marusic, M., Bajzer, A., Freyer, J.P., Vuk-Povlovic, S.: Analysis of growth of multicellular tumor spheroids by mathematical models. Cell Prolif. 27, 73ff (1994)

    Google Scholar 

  34. McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.: Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: Clinical implications and therapeutic targeting strategies. J. Theor. Biol. 241, 564–589 (2006)

    Article  MathSciNet  Google Scholar 

  35. Mombach, J.C.M., Lemke, N., Bodmann, B.E.J., Idiart, M.A.P.: A mean-field theory of cellular growth. Europhys. Lett. 59, 923–928 (2002)

    Article  Google Scholar 

  36. Norton, L.: A Gompertzian model of human breast cancer growth. Canc. Res. 48, 7067–7071 (1988)

    Google Scholar 

  37. Norton, L., Simon, R.: Growth curve of an experimental solid tumor following radiotherapy. J.  Nat. Canc. Inst. 58, 1735–1741 (1977)

    Google Scholar 

  38. Norton, L., Simon R.: The Norton-Simon hypothesis revisited. Canc. Treat. Rep. 70, 163–169 (1986)

    Google Scholar 

  39. d’Onofrio, A.: A general framework for modelling tumor-immune system competition and immunotherapy: Mathematical analysis and biomedial inferences. Physica D 208, 202–235 (2005)

    Google Scholar 

  40. d’Onofrio, A.: Rapidly acting antitumoral antiangiogenic therapies. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76, 031920 (2007)

    Google Scholar 

  41. d’Onofrio, A.: Fractal growth of tumors and other cellular populations: Linking the mechanistic to the phenomenological modeling and vice versa. Chaos, Solitons and Fractals 41, 875–880 (2009)

    Google Scholar 

  42. d’Onofrio, A., Gandolfi, A.: Tumour eradication by antiangiogenic therapy: Analysis and extensions of the model by Hahnfeldt et al. Math. Biosci. 191, 159–184 (2004)

    Google Scholar 

  43. d’Onofrio, A., Gandolfi, A.: The response to antiangiogenic anticancer drugs that inhibit endothelial cell proliferation, Appl. Math. and Comp. 181, 1155–1162 (2006)

    Google Scholar 

  44. d’Onofrio, A., Gandolfi, A.: A family of models of angiogenesis and anti-angiogenesis anti-cancer therapy. Math. Med. Biol. 26, 63–95 (2009)

    Google Scholar 

  45. d’Onofrio, A., Gandolfi, A.: Chemotherapy of vascularised tumours: role of vessel density and the effect of vascular “pruning”. J. Theor. Biol. 264, 253–265 (2010)

    Google Scholar 

  46. d’Onofrio, A., Gandolfi, A.: Resistance to anti-tumor chemotherapy due to bounded-noise transitions. Phys. Rev. E. 82, (2010) Art.n. 061901, doi:10.1103/PhysRevE.82.061901

    Google Scholar 

  47. d’Onofrio, A., Gandolfi, A., Rocca, A.: The dynamics of tumour-vasculature interaction suggests low-dose, time-dense antiangiogenic schedulings. Cell Prolif. 42, 317–329 (2009)

    Google Scholar 

  48. d’Onofrio, A., Ledzewicz, U., Maurer, H., Schättler, H.: On optimal delivery of combination therapy for tumors. Math. Biosci. 222, 13–26 (2009), doi:10.1016/j.mbs.2009.08.004

    Google Scholar 

  49. d’Onofrio, A., Fasano, A., Monechi, B.: A generalization of Gompertz law compatible with the Gyllenberg-Webb theory for tumour growth Math. Biosci. 230(1), 45–54 (2011)

    Google Scholar 

  50. O’Reilly, M.S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W.S., Flynn, E., Birkhead, J.R., Olsen, B.R., Folkman, J.: Endostatin: An endogenous inhibitor of angiogenesis and tumour growth. Cell 88, 277–285 (1997)

    Article  Google Scholar 

  51. Panetta, J.C.: A mathematical model of breast and ovarian cancer treated with paclitaxel. Math. Biosci. 146, 89–113 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  52. Peckham, M., Pinedo, H.M., Veronesi, U.: Oxford Textbook of Oncology. Oxford Medical Publications, New York (1995)

    Google Scholar 

  53. Quinn, M.J., d’Onofrio, A., Moeller, B., Black, R., Martinez-Garcia, C., Moeller, H., Rahu, M., Robertson, C., Schouten, L.J., La Vecchia, C., Boyle, P.: Cancer mortality trends in the EU and acceding countries up to 2001. Ann. Oncol. 14, 1148–1152 (2003)

    Google Scholar 

  54. Ribba, B., Marron, K., Agur, Z., Alarcïn, T., Maini, P.K.: A mathematical model of Doxorubicin treatment efficacy for non-Hodgkin’s lymphoma: Investigation of the current protocol through theoretical modelling results. Bull. Math. Biol. 67, 79–99 (2005)

    Article  MathSciNet  Google Scholar 

  55. Schättler, H., Jankovic, M.: A synthesis of time-optimal controls in the presence of saturated singular arcs. Forum Math. 5, 203–241 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  56. Schättler, H., Ledzewicz, U., Cardwell, B.: Robustness of optimal controls for a class of mathematical models for tumor anti-angiogenesis. Math. Biosci. Eng. 8, 355–369 (2011), doi:10.3934/mbe.2011.8.355

    Article  MathSciNet  Google Scholar 

  57. Sole, R.V.: Phase transitions in unstable cancer cell populations. Eur. J. Phys. B 35, 117–124 (2003)

    Article  MathSciNet  Google Scholar 

  58. Skipper, H.E.: On mathematical modeling of critical variables in cancer treatment (goals: Better understanding of the past and better planning in the future). Bull. Math. Biol. 48, 253–278 (1986)

    MathSciNet  Google Scholar 

  59. Swan, G.W.: Role of optimal control in cancer chemotherapy. Math. Biosci. 101, 237–284 (1990)

    Article  MATH  Google Scholar 

  60. Swierniak, A.: Optimal treatment protocols in leukemia - modelling the proliferation cycle. In: Proceedings of 12th IMACS World Congress, vol. 4, pp. 170–172, Paris (1988)

    Google Scholar 

  61. Swierniak, A.: Cell cycle as an object of control. J. Biol. Syst. 3, 41–54 (1995)

    Article  Google Scholar 

  62. Swierniak, A.: Direct and indirect control of cancer populations. Bull. Pol. Acad. Sci. 56, 367–378 (2008)

    Google Scholar 

  63. Swierniak, A.: Comparison of six models of antiangiogenic therapy. Appl. Math. 36, 333–348 (2009)

    MathSciNet  MATH  Google Scholar 

  64. Swierniak, A., Kimmel, M., Smieja, J.: Mathematical modeling as a tool for planning anti-cancer therapy, Eur. J. Pharmacol. 625, 108–121 (2009)

    Article  Google Scholar 

  65. Swierniak, A., Ledzewicz, U., Schättler, H.: Optimal control for a class of compartmental models in cancer chemotherapy. Int. J. Appl. Math. Comput. Sci. 13, 357–368 (2003)

    MathSciNet  MATH  Google Scholar 

  66. Thames, H.D., Hendry, J.H.: Fractionation in Radiotherapy. Taylor and Francis, London (1987)

    Google Scholar 

  67. Ubezio, P., Cameron, D.: Cell killing and resistance in pre-operative breast cancer chemotherapy. BMC Canc. 8, 201ff (2008)

    Google Scholar 

  68. Wheldon, T.E.: Mathematical Models in Cancer Research. Hilger Publishing, Boston-Philadelphia (1988)

    MATH  Google Scholar 

  69. Wijeratne, N.S., Hoo, K.A.: Understanding the role of the tumour vasculature in the transport of drugs to solid cancer tumors. Cell Prolif. 40, 283–301 (2007)

    Article  Google Scholar 

  70. Yu, J.L., Rak, J.W.: Host microenvironment in breast cancer development: Inflammatory and immune cells in tumour angiogenesis and arteriogenesis. Breast Canc. Res. 5, 83–88 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank an anonymous referee for his careful reading of our chapter and several suggestions that we incorporated into the final version. The research of A.  d’Onofrio has been done in the framework of the Integrated Project “p-medicine—from data sharing and integration via VPH models to personalized medicine,” project identifier: 270089, which is partially funded by the European Commission under the 7th framework program. The research of U. Ledzewicz and H. Schättler has been partially supported by the National Science Foundation under collaborative research grant DMS 1008209/1008221.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urszula Ledzewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ledzewicz, U., d’Onofrio, A., Schättler, H. (2013). Tumor Development Under Combination Treatments with Anti-angiogenic Therapies. In: Ledzewicz, U., Schättler, H., Friedman, A., Kashdan, E. (eds) Mathematical Methods and Models in Biomedicine. Lecture Notes on Mathematical Modelling in the Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4178-6_11

Download citation

Publish with us

Policies and ethics