Skip to main content

Artificial Neural Network Based Methodologies for the Estimation of Wind Speed

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN,volume 129))

Abstract

Recent advances in artificial neural networks (ANN) propose an alternative promising methodological approach to the problem of time series assessment as well as point spatial interpolation of irregularly and gridded data. In the field of wind power sustainable energy systems ANNs can be used as function approximators to estimate both the time and spatial wind speed distributions based on observational data. The first part of this work reviews the theoretical background, the mathematical formulation, the relative advantages, and limitations of ANN methodologies applicable to the field of wind speed time series and spatial modeling. The second part focuses on implementation issues and on evaluating the accuracy of the aforementioned methodologies using a set of metrics in the case of a specific region with complex terrain. A number of alternative feedforward ANN topologies have been applied in order to assess the spatial and time series wind speed prediction capabilities in different time scales. For the temporal forecasting of wind speed ANNs were trained using the Levenberg–Marquardt backpropagation algorithm with the optimum architecture being the one that minimizes the Mean Absolute Error on the validation set. For the spatial estimation of wind speed the nonlinear Radial basis function Artificial Neural Networks are compared versus the linear Multiple Linear Regression scheme.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Barbounis TG, Theocharis JB (2007) Locally recurrent neural networks for wind speed prediction using spatial correlation. Inform Sci 177(24):5775–5797. doi:10.1016/j.ins.2007.05.024

    Article  Google Scholar 

  • Beyer H, Degner T, Hausmann J, Hoffmann M, Rujan P (1994) Short term prediction of wind speed and power output of a wind turbine with neural networks. In: Proceedings of the 5th European wind energy association conference and exhibition. Thessaloniki, Greece, pp 349–352

    Google Scholar 

  • Bilgili M, Sahin B, Yasar A (2007) Application of artificial neural networks for the wind speed prediction of target station using reference stations data. Renew Energ 32:2350–2360. doi:10.1016/j.renene.2006.12.001

    Article  Google Scholar 

  • Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Cambridge

    Google Scholar 

  • Bouzgou H, Benoudjit N (2011) Multiple architecture system for wind speed prediction. Appl Energ 88:2463–2471. doi:10.1016/j.apenergy.2011.01.037

    Article  Google Scholar 

  • Cadenas E, Rivera W (2007) Wind speed forecasting in the South coast of Oaxaca, Mexico. Renew Energ 32:2116–2128. doi:10.1016/j.renene.2006.10.005

    Article  Google Scholar 

  • Cellura M, Cirrincione G, Marvuglia A, Miraoui A (2008) Wind speed spatial estimation for energy planning in Sicily: Introduction and statistical analysis. Renew Energ 33:1237–1250. doi:10.1016/j.renene.2007.08.012

    Article  Google Scholar 

  • Costa A, Crespo A, Navarro J, Lizcano G, Madsen H, Feitosa E (2008) A review on the young history of the wind power short-term prediction. Renew Sust Energ Rev 12(6):1725–1744. doi:10.1016/j.rser.2007.01.015

    Article  Google Scholar 

  • Cybenco G (1989) Approximation by superposition of a sigmoidal function. Math Control Signal 2:303–314. doi:10.1007/BF02551274

    Article  Google Scholar 

  • Deligiorgi D, Philippopoulos K (2011) Spatial interpolation methodologies in urban air pollution modeling: application for the greater area of metropolitan Athens, Greece. In Nejadkoorki F (ed) Advanced air pollution, InTech Publishers, doi: 10.5772/17734

  • Deligiorgi D, Kolokotsa D, Papakostas T, Mantou E (2007) Analysis of the wind field at the broader area of Chania, Crete. In: Proceedings of the 3rd IASME/WSEAS International Conference on Energy, Environment and Sustainable Development, pp 270–275

    Google Scholar 

  • Fadare DA (2010) The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria. Appl Energ 87(3):934–942. doi:10.1016/j.apenergy.2009.09.005

    Article  Google Scholar 

  • Fausett LV (1994) Fundamentals neural networks: architecture, algorithms, and applications. Prentice-Hall, Inc., Englewood Cliffs

    Google Scholar 

  • Fox DG (1981) Judging air quality model performance. B Am Meteorol Soc 62:599–609. doi: 10.1175/1520-0477(1981)062<0599:JAQMP>2.0.CO;2

  • Gardner MW, Dorling SR (1998) Artificial neural networks (the multilayer perceptron)-A review of applications in the atmospheric sciences. Atmos Environ 32:2627–2636. doi:10.1016/S1352-2310(97)00447-0

    Article  Google Scholar 

  • Heaton J (2005) Introduction to neural networks with Java. Heaton Research Inc., Chesterfield

    Google Scholar 

  • Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366. doi:10.1016/0893-6080(89)90020-8

    Article  Google Scholar 

  • Jain A, Mao J, Mohiuddin KM (1996) Artificial neural networks: a tutorial. Computer 29(3):31–44

    Article  Google Scholar 

  • Kalogirou SA (2001) Artificial neural networks in renewable energy systems applications: a review. Renew Sust Energ Rev 5:273–401. doi: 10.1016/S1364-0321(01)00006-5

    Google Scholar 

  • Kamal L, Jafri ZY (1997) Time series models to simulate and forecast hourly averaged wind speed in Quetta, Pakistan. Sol Energ 61(1):23–32. doi: 10.1016/S0038-092X(97)00037-6

  • Kariniotakis G, Stavrakakis GS, Nogaret EF (1996) Wind power forecasting using advanced neural network models. IEEE T Energ Conver 11(4):762–7. doi: 10.1109/60.556376

  • Koletsis I, Lagouvardos K, Kotroni V, Bartzokas A (2009) The interaction of northern wind flow with the complex topography of Crete island-part 1: observational study. Nat Hazards Earth Syst Sci 9:1845–1855. doi: 10.5194/nhess-9-1845-2009

  • Koletsis I, Lagouvardos K, Kotroni V, Bartzokas A (2010) The interaction of northern wind flow with the complex topography of Crete island-part 2: numerical study. Nat Hazards Earth Syst Sci 10:1115–1127. doi: 10.5194/nhess-10-1115-2010

  • Kotroni V, Lagouvardos K, Lalas D (2001) The effect of the island of Crete on the etesian winds over the Aegean sea. Q J R Meteorol Soc 127:1917–1937. doi: 10.1002/qj.49712757604

    Google Scholar 

  • Lei M, Shiyan L, Chuanwen J, Hongling L, Yan Z (2009) A review on the forecasting of wind speed and generated power. Renew Sust Energ Rev 13:915–920. doi: 10.1016/j.rser.2008.02.002

    Google Scholar 

  • Li G, Shi J (2010) On comparing three artificial neural networks for wind speed forecasting. Appl Energ 87:2313–20. doi: 10.1016/j.apenergy.2009.12.013

    Google Scholar 

  • Luo W, Taylor CM, Parker RS (2008) A comparison of spatial interpolation methods to estimate continuous wind speed surfaces using irregularly distributed data from England and Wales. Int J Climatol 28:947-959. doi: 10.1002/joc.1583

    Google Scholar 

  • Mohandes M, Rehman S, Halawani TO (1998) A neural networks approach for wind speed prediction. Renew Energ 13(3):345–354. doi: 10.1016/S0960-1481(98)00001-9

    Google Scholar 

  • More A, Deo MC (2003) Forecasting wind with neural networks. Mar Struct 16(1):35–49. doi: 10.1016/S0951-8339(02)00053-9

    Google Scholar 

  • Oztopal A (2006) Artificial neural network approach to spatial estimation of wind velocity. Energ Convers Manage 47:395–406. doi: 10.1016/j.enconman.2005.05.009

  • Philippopoulos K, Deligiorgi D (2012) Application of artificial neural networks for the spatial estimation of wind speed in a coastal region with complex topography. Renew Energ 38(1):75–82

    Article  Google Scholar 

  • Poggi P, Muselli M, Notton G, Cristofari C, Louche A (2003) Forecasting and simulating wind speed in Corsica by using an autoregressive model. Energ Convers Manage 44:3177–3196

    Article  Google Scholar 

  • Powell MJD (1987) Radial basis functions for multivariable interpolation: a review. In: Mason JC, Cox MG (eds) Algorithms for approximation. Clarendon Press, Oxford

    Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533–536

    Article  Google Scholar 

  • Soman SS, Zareipour H, Malik O, Mandal P (2010) A review of wind power and wind speed forecasting methods with different time horizons. North American Power Symposium (NAPS), doi: 10.1109/NAPS.2010.5619586

  • Torres LJ, Garcia A, De Blas M, De Francisco A (2005) Forecast of hourly average wind speed with ARMA models in Navarre (Spain). Sol Energ 79:65–77. doi:10.1016/j.solener.2004.09.013

    Article  Google Scholar 

  • Velazquez S, Carta AJ, Matias JM (2011) Comparison between ANNs and linear MCP algorithms in the long-term estimation of the cost per kWh produced by a wind turbine at a candidate site: a case study in the Canary Islands. Appl Energ 88:3869–3881. doi:10.1016/j.apenergy.2011.05.007

    Article  Google Scholar 

  • Willmott CJ (1982) Some comments on the evaluation of model performance. B Am Meteorol Soc 63:1309–1313. doi: 10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2

  • Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30:79–82. doi: 10.3354/cr030079

    Google Scholar 

  • Willmott CJ, Ackleson SG, Davis RE, Feddema JJ, Klink KM, Legates DR, O’Donnell J, Rowe CM (1985) Statistics for the evaluation and comparison of models. J Geophys Res 90:8995–9005. doi: 10.1029/JC090iC05p08995

    Google Scholar 

  • Yu H, Wilamowski BM (2011) Levenberg–Marquardt training. In: Wilamowski BM, Irwin JD (eds) Industrial electronics handbook, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Zhang GP, Patuwo E, Hu M (1998) Forecasting with artificial neural networks: the state of the art. Int J Forecasting 14(1):35–62. doi: 10.1016/S0169-2070(97)00044-7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Despina Deligiorgi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Deligiorgi, D., Philippopoulos, K., Kouroupetroglou, G. (2013). Artificial Neural Network Based Methodologies for the Estimation of Wind Speed. In: Cavallaro, F. (eds) Assessment and Simulation Tools for Sustainable Energy Systems. Green Energy and Technology, vol 129. Springer, London. https://doi.org/10.1007/978-1-4471-5143-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5143-2_12

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5142-5

  • Online ISBN: 978-1-4471-5143-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics