Skip to main content
Log in

Parametric optimization of NiFe2O4 nanoparticles synthesized by mechanical alloying

  • Research Article
  • Published:
Materials Science-Poland

Abstract

In this study, the Taguchi robust design method is used for optimizing ball milling parameters including milling time, rotation speed and ball to powder weight ratio in the planetary ball milling of nanostructured nickel ferrite powder. In fact, the current work deals with NiFe2O4 nanoparticles mechanochemically synthesized from NiO and Fe2O3 powders. The Taguchi robust design technique of system optimization with the L9 orthogonal array is performed to verify the best experimental levels and contribution percentages (% ρ) of each parameter. Particle size measurement using SEM gives the average particle size value in the range of 59–67 nm. X-ray diffraction using Cu Kα radiation is also carried out to identify the formation of NiFe2O4 single phase. The XRD results suggest that NiFe2O4 with a crystallite size of about 12 nm is present in 30 h activated specimens. Furthermore, based on the results of the Taguchi approach the greatest effect on particle size (42.10 %) is found to be due to rotation speed followed by milling time (37.08 %) while ball to powder weight ratio exhibits the least influence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang J., Shi J., Gong M., J. Solid State Chem., 182(8) (2009), 2135.

    Article  Google Scholar 

  2. Safarik I., Safarikova M., Nanostruct. Mater., Springer, Vienna, (2002), 1.

    Book  Google Scholar 

  3. Pileni M.P., Nat. Mater., 2 (2003), 145.

    Article  Google Scholar 

  4. Sun J., Zhou S., Hou P., Yang Y., Weng J., Li X., Li M., J. Biomed. Mater. Res. A, 80A (2007), 333.

    Article  Google Scholar 

  5. Salavati-Niasari M., Davar F., Mahmoudi T., Polyhedron, 28 (2009), 1455.

    Article  Google Scholar 

  6. Mathew D.S., Juang R.S., Chem. Eng. J., 129 (2007), 51.

    Article  Google Scholar 

  7. Kodama R.H., Berkowitz A.E., Mcniff E., Foner J., Foner S., Phys. Rev. Lett., 77 (1996), 394.

    Article  Google Scholar 

  8. Srivastava M., Ojha A.K., Chaubey S., Materny A., J. Alloy. Compd., 481 (2009), 515.

    Article  Google Scholar 

  9. Maensiri S., Masingboon C., Boonchom B., Supapan S., Scripta Mater., 56 (2007), 797.

    Article  Google Scholar 

  10. Xu Q., Wei Y., Liu Y., Ji X., Yang L., Gu M., Solid State Sci., 11 (2009) 472.

    Article  Google Scholar 

  11. Arulmurugan R., Vaidyanathan G., Sendhilnathan S., Jeyadevan B., J. Magn. Magn. Mater., 298 (2006), 83.

    Article  Google Scholar 

  12. Muthuselvam I.P., Bhowmik R.N., Solid State Sci., 11 (2009), 719.

    Article  Google Scholar 

  13. Suryanarayana C., Prog. Mater. Sci.+, 46 (2001), 1.

    Article  Google Scholar 

  14. Maurice D.R., Courtney T.H., Metall. Mater. Trans. A, 21 (1990), 289.

    Article  Google Scholar 

  15. Maurice D.R., Courtney T.H., Metall. Mater. Trans. A, 26 (1995), 2431.

    Article  Google Scholar 

  16. Cook T.M., Courtney T.H., Metall. Mater. Trans. A, 26 (1995), 2389.

    Article  Google Scholar 

  17. Abdellaoui M., Gaffet E., J. Alloy. Compd., 209 (1994), 351.

    Article  Google Scholar 

  18. Garcia-diaz A., Philips D.T., Principles of experimental design and analysis, Chapman and Hall, London, 1995.

    Google Scholar 

  19. Montgomery D.C., Design and analysis of experiments, 4th ed., John Wiley and Sons, New York, 1997.

    Google Scholar 

  20. Klug H.P., Alexander L.E., X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed., John Wiley and Sons, New York, 1974.

    Google Scholar 

  21. Monshi A., Foroughi M.R., Monshi M.R., World J. Nano Sci. Eng., 2 (2012), 154.

    Article  Google Scholar 

  22. Gheisari Kh., Javadpour S., Oh J.T., Ghaffari M., J. Alloy. Compd., 472 (2009), 416.

    Article  Google Scholar 

  23. Cullity B.D., Elements of X-ray Diffraction, Addison Wesley Pub. Co. Inc., 1956, 42.

    Google Scholar 

  24. Qi W.H., Wang M.P., Mater. Chem. Phys., 88 (2004), 280.

    Article  Google Scholar 

  25. Roy R.K., A Primer on the Taguchi Method, 2nd ed., Society of Manufacturing Engineers, 2010.

    Google Scholar 

  26. Ross P.J., Taguchi G., Techniques for Quality Engineering, McGraw-Hill, New York, 1988.

    Google Scholar 

  27. Paiva-Santos C.O., Gouveia H., Las W.C., Varela J.A., Mater. Struct., 6 (1999), 111.

    Google Scholar 

  28. Ross P.J., Taguchi Techniques for Quality Engineering, 2nd ed., McGraw-Hill, Singapore, 1996.

    Google Scholar 

  29. Bendell A., Disney J., Pridmore W.A., Taguchi Methods: Applications in World Industry, IFS Publications, UK, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hajalilou.

About this article

Cite this article

Hajalilou, A., Hashim, M., Ebrahimi-Kahrizsangi, R. et al. Parametric optimization of NiFe2O4 nanoparticles synthesized by mechanical alloying. Mater Sci-Pol 32, 281–291 (2014). https://doi.org/10.2478/s13536-013-0173-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13536-013-0173-x

Keywords

Navigation