Skip to main content
Log in

Pharmacological Rationale for the Clinical Use of Caffeine

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Summary

Caffeine is widely consumed in beverages to obtain mild CNS stimulant effects. Long term use produces tolerance to some of the pharmacological effects. Withdrawal of caffeine, even from moderate intake levels, can produce symptoms such as headache, fatigue and anxiety. Caffeine is used therapeutically in combination with ergotamine for migraine headaches and in combination with nonsteroidal anti-inflammatory drugs in analgesic formulations. Caffeine alone is used as a somnolytic, to treat various headache conditions, respiratory depression in neonates, postprandial hypotension and obesity, and to enhance seizure duration in electroconvulsive therapy.

In some headache and in pain paradigms, caffeine may produce direct adjuvant analgesic properties, while in other headache conditions (perioperative, post-dural puncture) caffeine may be effective by alleviating a manifestation of caffeine withdrawal. Other uses, such as to promote wakefulness, for respiratory stimulation and seizure prolongation, rely on central stimulant properties of caffeine. Effects of caffeine on the vasculature may contribute to the relief of some headaches and in postprandial hypotension. Blockade of methylxanthinesensitive adenosine receptors is the currently accepted mechanism of action of caffeine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rall TW. Drugs used in the treatment of asthma: the methylxanthines, cromolyn sodium, and other agents. In: Goodman AG, Rail TW, Nies AS, et al., editors. The pharmacological basis of therapeutics. Elmsford, NY: Pergamon Press, 1990: 618-37

  2. Griffiths RR, Woodson PP. Reinforcing properties of caffeine: studies in humans and laboratory animals. Pharmacol Biochem Behav 1988; 29: 419–27

    Article  PubMed  CAS  Google Scholar 

  3. Griffiths RR, Woodson PP. Caffeine physical dependence: a review of human and laboratory studies. Psychopharmacology 1988; 94: 437–51

    Article  PubMed  CAS  Google Scholar 

  4. Griffiths RR, Woodson PP. Reinforcing effects of caffeine in humans. J Pharmacol Exp Ther 1988; 246: 21–9

    PubMed  CAS  Google Scholar 

  5. Holtzman SG. Caffeine as a model of abuse. Trends Pharmacol Sci 1990; 11: 355–6

    Article  PubMed  CAS  Google Scholar 

  6. Greden JF, Fontaine P, Lubetsky M, et al. Anxiety and depression associated with caffeinism among psychiatric inpatients. Am J Psych 1978; 135: 963–6

    CAS  Google Scholar 

  7. Charney DS, Heninger GR, Jatlow PI. Increased anxiogenic effects of caffeine in panic disorder. Arch Gen Psychiatry 1985; 42: 233–43

    Article  PubMed  CAS  Google Scholar 

  8. Robertson D, Wade D, Workman R, et al. Tolerance to the humoral and hemodynamic effects of caffeine in man. J Clin Invest 1981; 67: 1111–7

    Article  PubMed  CAS  Google Scholar 

  9. Chou DT, Khan S, Forde J, et al. Caffeine tolerance: behavioural, electrophysiological and neurochemical evidence. Life Sci 1985; 36: 2347–58

    Article  PubMed  CAS  Google Scholar 

  10. Finn IB, Holtzman SG. Tolerance to caffeine-induced stimulation of locomotor activity in rats. J Pharmacol Exp Ther 1986; 238: 542–6

    PubMed  CAS  Google Scholar 

  11. Graham DM. Caffeine — its identity, dietary sources, intake and biological effects. Nutr Rev 1978; 36: 97–102

    Article  PubMed  CAS  Google Scholar 

  12. Barone JJ, Roberts H. Human consumption of caffeine. In: Dews PB, editor. Caffeine: perspectives from recent research. New York: Springer Verlag, 1984: 57–73

    Google Scholar 

  13. Grossier DS. A study of caffeine in tea. Am J Clin Nutr 1978; 31: 1727–31

    Google Scholar 

  14. D’Amicis A, Viani R. The consumption of coffee. In: Garattini S, editor. Caffeine, coffee, and health. New York: Raven Press, 1993: 1–41

    Google Scholar 

  15. Gilbert RM. Caffeine consumption. In: Spiller GA, editor. The methylxanthine beverages and foods: chemistry, composition and health effects. New York: Liss, 1984: 185–213

    Google Scholar 

  16. Schreiber GB, Maffeo CE, Robins M, et al. Measurement of coffee and caffeine intake: implications for epidemiological research. Prev Med 1988; 17: 280–94

    Article  PubMed  CAS  Google Scholar 

  17. Drug information for the health care professional. 13th ed., Vol. 1. USPDI, 1993

  18. Compendium of pharmaceuticals and specialties, 29th ed. Canadian Manufacturers Association, 1994

  19. Arnaud MJ. Metabolism of caffeine and other components of coffee. In: Garattini S, editor. Caffeine, coffee and health. New York: Raven Press, 1993: 43–95

    Google Scholar 

  20. Daly JW. Mechanism of action of caffeine. In: Garattini S, editor. Caffeine, coffee, and health. New York: Raven Press, 1993: 97–150

    Google Scholar 

  21. Fredholm BB, Abbracchio MP, Burnstock G, et al. Nomenclature and classification of purinoceptors. Pharmacol Rev 1994; 46: 143–56

    PubMed  CAS  Google Scholar 

  22. Collis MG, Hourani SMO. Adenosine receptor subtypes. Trends Pharmacol Sci 1993; 14: 360–6

    Article  PubMed  CAS  Google Scholar 

  23. Zhou FQ-Y, Olah ME, Li C, et al. Molecular cloning and characterization of a novel adenosine receptor: the A3 adenosine receptor. Proc Natl Acad Sci USA 1992; 89: 7432–6

    Article  PubMed  CAS  Google Scholar 

  24. Ramkumar V, Stiles GL, Beaven MA, et al. The A3 receptor is the unique adenosine receptor which facilitates release of allergic mediators in mast cells. J Biol Chem 1993; 268: 16887–90

    PubMed  CAS  Google Scholar 

  25. Biaggioni I, Paul S, Puckett A, et al. Caffeine and theophylline as adenosine receptor antagonists in humans. J Pharmacol Exp Ther 1991; 258: 588–93

    PubMed  CAS  Google Scholar 

  26. Choi OH, Shamim MT, Padgett WL, et al. Caffeine and theophylline analogues: correlation of behavioural effects with activity as adenosine receptor antagonists and as phosphodiesterase inhibitors. Life Sci 1988; 43: 387–98

    Article  PubMed  CAS  Google Scholar 

  27. Ukena D, Schudt C, Sybrecht GW. Adenosine receptor-blocking xanthines as inhibitors of phosphodiesterase isoenzymes. Biochem Pharmacol 1993; 45: 847–51

    Article  PubMed  CAS  Google Scholar 

  28. Endo M. Calcium release from sarcoplasmic reticulum. Curr Topics Memb Trans 1985; 25: 181–230

    Article  CAS  Google Scholar 

  29. Neering IR, McBurney RN. Role for microsomal Ca storage in mammalian neurons?. Nature 1984; 309: 158–60

    Article  PubMed  CAS  Google Scholar 

  30. Lipscombe D, Madison DV, Poenie M, et al. Spatial distribution of calcium channels and cytosolic calcium transients in growth cones and cell bodies of sympathetic neurons. Proc Natl Acad Sci USA 1988; 85: 2398–402

    Article  PubMed  CAS  Google Scholar 

  31. McPherson PS, Kim YK, Valdivia H, et al. The brain ryanodine receptor: a caffeine-sensitive calcium release channel. Neuron 1991; 7: 17–25

    Article  PubMed  CAS  Google Scholar 

  32. Croce MA, Kramer GL, Carbers DL. Inhibition of alkaline phosphatase by substituted xanthines. Biochem Pharmacol 1979; 28: 1227–31

    Article  PubMed  CAS  Google Scholar 

  33. Fredholm BB, Lindgren E. Inhibition of soluble 5-nucleotidase from rat brain by different xanthine derivatives. Biochem Pharmacol 1983; 32: 2832–4

    Article  PubMed  CAS  Google Scholar 

  34. Wu PH, Barraco A, Phillis JW. Further studies on the inhibition of adenosine uptake into rat brain synaptosomes by adenosine derivatives and methylxanthines. Gen Pharmacol 1984; 15: 251–4

    Article  PubMed  CAS  Google Scholar 

  35. Marangos PJ, Paul SM, Pama AM, et al. Purinergic inhibition of diazepam binding to rat brain in vitro. Life Sci 1979; 24: 851–8

    Article  PubMed  CAS  Google Scholar 

  36. Boulenger JP, Patel J, Marangos PJ. Effects of caffeine and theophylline on adenosine and benzodiazepine receptors in human brain. Neurosci Lett 1982; 30: 161–6

    Article  PubMed  CAS  Google Scholar 

  37. Nehlig A, Daval J-L, Debry G. Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res Rev 1992; 17: 139–70

    Article  PubMed  CAS  Google Scholar 

  38. Snyder SH, Katims JJ, Annau Z, et al. Adenosine receptors and behavioral actions of methylxanthines. Proc Natl Acad Sci USA 1981; 78: 3260–4

    Article  PubMed  CAS  Google Scholar 

  39. Katims JJ, Annau Z, Snyder SH. Interactions in the behavioral effects of methylxanthines and adenosine derivatives. J Pharmacol Exp Ther 1983; 227: 167–73

    PubMed  CAS  Google Scholar 

  40. Barraco RA, Coffin VL, Altman HJ, et al. Central effects of adenosine analogs on locomotor activity in mice and antagonism of caffeine. Brain Res 1983; 272: 392–5

    Article  PubMed  CAS  Google Scholar 

  41. Barraco RA. Behavioural actions of adenosine and related substances. In: Phillis JW, editor. Adenosine and adenine nucleotides as regulators of cellular function. Boca Raton: CRC Press, 1991: 339–66

    Google Scholar 

  42. Barraco RA, Martens KA, Parizon M, et al. Adenosine A2a receptors in the nucleus accumbens mediate locomotor depression. Brain Res Bull 1993; 31: 397–404

    Article  PubMed  CAS  Google Scholar 

  43. Kaplan GB, Greenblatt DJ, Kent MA, et al. Caffeine-induced behavioral stimulation is dose-dependent and associated with Ai receptor occupancy. Neuropsychopharmacology 1992; 6: 145–53

    PubMed  CAS  Google Scholar 

  44. Nikodijevi O, Sarges R, Daly JW, et al. Behavioural effects of Al- and A2-selective adenosine agonists and antagonists: evidence for synergism and antagonism. J Pharmacol Exp Ther 1991; 259: 286–94

    Google Scholar 

  45. Josselyn SA, Beninger RJ. Behavioral effects of intrastriatal caffeine mediated by adenosinergic modulation of dopamine. Pharmacol Biochem Behav 1991; 39: 97–103

    Article  PubMed  CAS  Google Scholar 

  46. Ferre S, Fuxe K, Von Euler G, et al. Adenosine-dopamine interactions in the brain. Neuroscience 1992; 51: 501–12

    Article  PubMed  CAS  Google Scholar 

  47. Garrett BE, Holtzman SG. Di and D2 dopamine receptor antagonists block caffeine-induced stimulation of locomotor activity in rats. Pharmacol Biochem Behav 1994; 47: 89–94

    Article  PubMed  CAS  Google Scholar 

  48. Joyce EM, Koob GF. Amphetamine-, scopolamine- and caffeine-induced locomotor activity following 6-hydroxydopamine lesions of the mesolimbic dopamine system. Psychopharmacology 1981; 70: 311–3

    Article  Google Scholar 

  49. Swerdlow NR, Vaccarino FJ, Amalric M, et al. The neural substrates for the motor-activating properties of psychostimulants: a review of recent findings. Pharmacol Biochem Behav 1986; 25: 233–48

    Article  PubMed  CAS  Google Scholar 

  50. White BC, Simpson CC, Adams JE, et al. Monoamine synthesis and caffeine-induced locomotor activity. Neuropharmacology 1978; 17: 511–3

    Article  PubMed  CAS  Google Scholar 

  51. Finn IB, Iuvone PM, Holtzman SG. Depletion of catecholamines in the brain of rats differentially affects stimulation of locomotor activity by caffeine, D-amphetamine, and methylphenidate. Neuropharmacology 1990; 29: 625–31

    Article  PubMed  CAS  Google Scholar 

  52. Sawynok J, Reid AR, Doak GJ. Caffeine analgesia in the rat hot plate and formalin tests and locomotor stimulation: involvement of noradrenergic mechanisms. Pain. In press

  53. Sawynok J, Yaksh, TL. Caffeine as an analgesic adjuvant: a review of pharmacology and mechanisms of action. Pharmacol Rev 1993; 45: 43–85

    PubMed  CAS  Google Scholar 

  54. Sawynok J. Adenosine and pain. In: Phillis JW, editor. Adenosine and adenine nucleotides as regulators of cellular function. Boca Raton: CRC Press, 1991: 391–412

    Google Scholar 

  55. Taiwo YO, Levine JD. Direct cutaneous hyperalgesia induced by adenosine. Neuroscience 1990; 38: 756–62

    Article  Google Scholar 

  56. Karlsten R, Gordh T, Post C. Local antinociceptive and hyperalgesic effects in the formalin test after peripheral administration of adenosine analogues in mice. Pharmacol Toxicol 1992; 70: 434–8

    Article  PubMed  CAS  Google Scholar 

  57. Bleehen T, Keele CA. Observations on the algogenic actions of adenosine compounds on the human blister base preparation. Pain 1977; 3: 367–77

    Article  PubMed  CAS  Google Scholar 

  58. Sylven C, Beerman B, Jonzon B, et al. Angina pectoris-like pain provoked by intravenous adenosine in healthy volunteers. BMJ 1986; 293: 227–30

    Article  PubMed  CAS  Google Scholar 

  59. Crea F, Pupita G, Galassi AR, et al. Role of adenosine in pathogenesis of anginal pain. Circulation 1990; 81: 164–72

    Article  PubMed  CAS  Google Scholar 

  60. Pappagallo M, Gaspardone A, Tomai F, et al. Analgesic effect of bamiphylline on pain induced by intradermal injection of adenosine. Pain 1993; 53: 199–204

    Article  PubMed  CAS  Google Scholar 

  61. Post C. Antinociceptive effects in mice after intrathecal injection of 5-N-ethylcarboxamide adenosine. Neurosci Lett 1984; 51: 325–30

    Article  PubMed  CAS  Google Scholar 

  62. DeLander GE, Hopkins CJ. Spinal adenosine modulates descending antinociceptive pathways stimulated by morphine. J Pharmacol Exp Ther 1986; 239: 88–93

    PubMed  CAS  Google Scholar 

  63. Karlsten R, Gordh T, Hartvig P, et al. Effects of intrathecal injection of the adenosine receptor agonists R-phenylisopropyl-adenosine and N-ethylcarboxamide-adenosine on nociception and motor function in the rat. Anesth Analg 1990; 71: 60–4

    Article  PubMed  CAS  Google Scholar 

  64. Doi T, Kazuna S, Maki Y. Spinal antinociceptive effects of adenosine compounds in mice. Eur J Pharmacol 1987; 127: 227–31

    Article  Google Scholar 

  65. DeLander GE, Wahl JJ. Behaviour induced by putative nociceptive neurotransmitters is inhibited by adenosine or adenosine analogs coadministered intrathecally. J Pharmacol Exp Ther 1988; 246: 565–70

    PubMed  CAS  Google Scholar 

  66. Santicioli P, Del Bianco ED, Maggi CA. Adenosine Ai receptors mediate the presynaptic inhibition of calcitonin gene-related peptide release by adenosine in the rat spinal cord. Eur J Pharmacol 1993; 231: 139–42

    Article  PubMed  CAS  Google Scholar 

  67. Herrick-Davis K, Chippari S, Luttinger D, et al. Evaluation of adenosine agonists as potential analgesics. Eur J Pharmacol 1989; 162: 365–9

    Article  PubMed  CAS  Google Scholar 

  68. Boulenger JP, Patel J, Post RM, et al. Chronic caffeine consumption increases the number of brain adenosine receptors. Life Sci 1983; 32: 1135–42

    Article  PubMed  CAS  Google Scholar 

  69. Hawkins M, Dugich MM, Porter NM, et al. Effects of chronic administration of caffeine on adenosine A1 and A2 receptors in rat brain. Brain Res Bull 1988; 21: 479–82

    Article  PubMed  CAS  Google Scholar 

  70. Shi D, Nikodijevi O, Jacobsen KA, et al. Chronic caffeine alters the density of adenosine, adrenergic, cholinergic, GABA, and serotonin receptors and calcium channels in mouse brain. Cell Molec Neurobiol 1993; 13: 247–61

    Article  PubMed  CAS  Google Scholar 

  71. Ahlijanian MK, Takemori AE. Cross-tolerance studies between caffeine and (-)N6-phenylisopropyl)-adenosine (PIA) in mice. Life Sci 1986; 88: 566–88

    Google Scholar 

  72. Green RM, Stiles GL. Chronic caffeine ingestion sensitizes the Al adenosine receptor-adenylate cyclase system in rat cerebral cortex. J Clin Invest 1986; 77: 222–7

    Article  PubMed  CAS  Google Scholar 

  73. Nikodijevi O, Jacobsen KA, Daly JW. Locomotor activity in mice during chronic treatment with caffeine and withdrawal. Pharmacol Biochem Behav 1993; 44: 199–216

    Article  Google Scholar 

  74. Holtzman SG, Mante S, Minneman KP. Role of adenosine receptors in caffeine tolerance. J Pharmacol Exp Ther 1991; 256: 62–8

    PubMed  CAS  Google Scholar 

  75. Ramkumar V, Bumgarner JR, Jacobsen KA, et al. Multiple components of the Ai adenosine receptor-adenylate cyclase system are regulated in rat cerebral cortex by chronic caffeine ingestion. J Clin Invest 1988; 82: 242–7

    Article  PubMed  CAS  Google Scholar 

  76. Fastbom J, Fredholm BB. Effects of long-term theophylline treatment on adenosine A1-receptors in rat brain: autoradiographic evidence for increased receptor and altered coupling to G-proteins. Brain Res 1990; 507: 195–9

    Article  PubMed  CAS  Google Scholar 

  77. Kaplan GB, Greenblatt DJ, Kent MA, et al. Caffeine treatment and withdrawal in mice: relationships between dosage, concentrations, locomotor activity and Ai adenosine receptor binding. J Pharmacol Exp Ther 1993; 266: 1563–72

    PubMed  CAS  Google Scholar 

  78. Kirch DG, Taylor TR, Gerhardt GA, et al. Effect of chronic caffeine administration on monoamine and monoamine metabolite concentrations in rat brain. Neuropharmacology 1990; 19: 599–602

    Article  Google Scholar 

  79. Greden JF, Victor BS, Fontaine P, et al. Caffeine-withdrawal headache: a clinical profile. Psychosomatics 1980; 21: 411–8

    PubMed  CAS  Google Scholar 

  80. Silverman K, Evans SM, Strain EC, et al. Withdrawal syndrome after the double-blind cessation of caffeine consumption. N Engl J Med 1992; 327: 1109–14

    Article  PubMed  CAS  Google Scholar 

  81. Griffiths RR, Evans SM, Heishman SJ, et al. Low-dose caffeine physical dependence in humans. J Pharmacol Exp Ther 1990; 255: 1123–32

    PubMed  CAS  Google Scholar 

  82. von Borstel RW, Wurtman RJ, Conlay LA. Chronic caffeine consumption potentiates the hypotensive action of circulating adenosine. Life Sci 1983; 32: 1151–8

    Article  Google Scholar 

  83. Mathew RJ, Wilson WH. Caffeine induced changes in cerebral circulation. Stroke 1985; 16: 814–7

    Article  PubMed  CAS  Google Scholar 

  84. Hughes JR. Clinical importance of caffeine withdrawal. N Engl J Med 1992; 327: 1160–1

    Article  PubMed  CAS  Google Scholar 

  85. Hughes JR, Oliveto AH, Heizer JE, et al. Should caffeine abuse, dependence or withdrawal be added to DSM-IV or ICD-10?. Am J Psychiatry 1992; 149: 33–40

    PubMed  CAS  Google Scholar 

  86. Galletly DC, Fenelly M, Whitman JG. Does caffeine withdrawal contribute to postanaesthetic morbidity? [letter]. Lancet 1989; 1: 1335

    Article  PubMed  CAS  Google Scholar 

  87. Fennelly M, Galletly DC, Purdie GL. Is caffeine withdrawal the mechanism for postoperative headache? Anesth Analg 1991; 72: 449–53

    Article  PubMed  CAS  Google Scholar 

  88. Weber JG, Ereth MH, Danielson DR. Perioperative ingestion of caffeine and postoperative headache. Mayo Clin Proc 1993; 68: 842–5

    Article  PubMed  CAS  Google Scholar 

  89. Olesen J. Cerebral and extracranial circulatory disturbances in migraine: pathophysiological implications. Cerebrovasc Brain Metab Rev 1991; 3: 1–28

    PubMed  CAS  Google Scholar 

  90. Moskowitz MA, Macfarlane R. Neurovascular and molecular mechanisms in migraine headaches. Cerebrovasc Brain Metab Rev 1993; 5: 159–77

    PubMed  CAS  Google Scholar 

  91. Perrin VL. Clinical pharmacokinetics of ergotamine in migraine and cluster headache. Clin Pharmacokin 1985; 10: 334–2

    Article  CAS  Google Scholar 

  92. McCarthy BG, Peroutka SJ. Comparative neuropharmacology of dihydroergotamine and sumatriptan (GK,43175). Headache 1989; 29: 420–2

    Article  PubMed  CAS  Google Scholar 

  93. Dechant KL, Clissold SP. Sumatriptan: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy in the acute treatment of migraine and cluster headache. Drugs 1992; 43: 776–98

    Article  PubMed  CAS  Google Scholar 

  94. Saito K, Markowitz S, Moskowitz MA. Ergot alkaloids block neurogenic extravasation in dura mater: proposed action in vascular headache. Ann Neurol 1988; 24: 732–7

    Article  PubMed  CAS  Google Scholar 

  95. Moskowitz MA. Neurogenic versus vascular mechanisms of sumatriptan and ergot alkaloids in migraine. Trends Pharmacol Sci 1992; 13: 307–11

    Article  PubMed  CAS  Google Scholar 

  96. Friedman AP, Merritt HH. Treatment of headache. JAMA 1957; 163: 1111–7

    Article  CAS  Google Scholar 

  97. Schmidt R, Fanchamps A. Effect of caffeine on intestinal absorption of ergotamine in man. Eur J Clin Pharmacol 1974; 7: 213–6

    Article  PubMed  CAS  Google Scholar 

  98. Zoglio MA, Maulding HV, Windheuser JJ. Complexes of ergot alkaloids and derivatives: I. The interaction of caffeine with ergotamine tartrate in aqueous solution. J Pharm Sci 1969; 58: 222–5

    CAS  Google Scholar 

  99. Mathew RJ, Barr DL, Weinman ML. Caffeine and cerebral blood flow. Br J Psychiatry 1983; 143: 604–8

    Article  PubMed  CAS  Google Scholar 

  100. Cameron OG, Modell JG, Hariharam M. Caffeine and human cerebral blood flow: a positron emission tomography study. Life Sci 1990; 47: 1141–6

    Article  PubMed  CAS  Google Scholar 

  101. Phillis JW. Adenosine in the control of the cerebral circulation. Cerebrovasc Brain Metab Rev 1989; 1: 26–54

    PubMed  CAS  Google Scholar 

  102. Van Wylen DGL, Sciotti VM, Winn HR. Adenosine and the regulation of cerebral blood flow. In: Phillis JW, editor. Adenosine and adenine nucleotides as regulators of cellular function. Boca Raton: CRC Press, 1991: 191–202

    Google Scholar 

  103. Cronstein B. Adenosine, an endogenous anti-inflammatory agent. J Appl Physiol 1994; 76: 5–13

    PubMed  CAS  Google Scholar 

  104. Fernandez E. Headaches associated with low spinal fluid pressure. Headache 1990; 30: 122–8

    Article  PubMed  CAS  Google Scholar 

  105. Sechzer PH, Abel L. Post-spinal anesthesia headache treated with caffeine: part I. Evaluation with demand method. Curr TherRes 1978; 24: 307–12

    Google Scholar 

  106. Sechzer, PH. Post spinal anesthesia headache treated with caffeine: part II. Intracranial vascular distension, a key factor. Curr Ther Res 1979; 26: 440–8

    Google Scholar 

  107. Camman WR, Murray RS, Mushlin PS, et al. Effects of oral caffeine on postdural puncture headache: a double-blind, placebo-controlled trial. Anesth Analg 1990; 70: 181–4

    Article  Google Scholar 

  108. Jarvis AP, Greenawalt JW, Fagraeus L. Intravenous caffeine for postdural puncture headache [letter]. Anesth Analg 1986; 65: 316–7

    Article  PubMed  CAS  Google Scholar 

  109. Ward N, Whitney C, Avery D, et al. The analgesic effects of caffeine in headache. Pain 1991; 44: 151–5

    Article  PubMed  CAS  Google Scholar 

  110. Over-the-counter drugs: establishment of a monograph for OTC internal analgesic, antipyretic and antirheumatic products. Washington: US Government Printing Office, Federal Register, Vol. 42, 1977: 35439-87

  111. Laska EM, Sunshine A, Mueller F, et al. Caffeine as an analgesic adjuvant. JAMA 1984; 251: 1711–8

    Article  PubMed  CAS  Google Scholar 

  112. Forbes JA, Jones KF, Kehm CJ, et al. Evaluation of aspirin, caffeine, and their combination in postoperative oral surgery. Pharmacotherapy 1990; 10: 387–93

    PubMed  CAS  Google Scholar 

  113. Forbes JA, Beaver WT, Jones KF, et al. Effect of caffeine on ibuprofen analgesia in postoperative oral surgery pain. Clin Pharmacol Ther 1991; 49: 674–84

    Article  PubMed  CAS  Google Scholar 

  114. Schachtel BP, Fillingim JM, Lane AC, et al. Caffeine as an analgesic adjuvant: a double-blind study comparing aspirin with caffeine to aspirin and placebo in patients with sore throat. Arch Intern Med 1991; 151: 733–7

    Article  PubMed  CAS  Google Scholar 

  115. Winter Jr L, Appleby F, Ciccone PE, et al. A double-blind comparative evaluation of acetaminophen, caffeine, and the combination of acetaminophen and caffeine in outpatients with post-operative oral surgery pain. Curr Ther Res 1983; 33: 115–22

    Google Scholar 

  116. Beaver WT. Caffeine revisited. JAMA 1984; 251: 1732–3

    Article  PubMed  CAS  Google Scholar 

  117. Aranda JV, Gorman W, Bergsteinsson H, et al. Efficacy of caffeine in treatment of apnea in the low-birth-weight infant. J Pediatric 1977; 90: 467–72

    Article  CAS  Google Scholar 

  118. Aranda JV, Grondin D, Sasyniuk BI. Pharmacologic considerations in the therapy of neonatal apnea. Pediatr Clin North Am 1981; 28: 113–33

    PubMed  CAS  Google Scholar 

  119. Murat L, Moriette G, Blin MC, et al. The efficacy of caffeine in the treatment of recurrent idiopathic apnea in premature infants. J Pediatr 1981; 99: 984–9

    Article  PubMed  CAS  Google Scholar 

  120. Brouard C, Moreitte G, Murat I, et al. Comparative efficacy of theophylline and caffeine in the treatment of idiopathic apnea in premature infants. Am J Dis Child 1985; 139: 698–700

    PubMed  CAS  Google Scholar 

  121. Bairam A, Boutroy M-J, Badonnel Y, et al. Theophylline versus caffeine: comparative effects in treatment of idiopathic apnea in the preterm infant. J Pediatr 1987; 110: 636–9

    Article  PubMed  CAS  Google Scholar 

  122. Fuglsang G, Nielsen K, Nielsen LK, et al. The effect of caffeine compared with theophylline in the treatment of idiopathic apnea in premature infants. Acta Pediatr Scand 1989; 78: 786–8

    Article  CAS  Google Scholar 

  123. Welborn LG, De Soto H, Hannallah RS, et al. The use of caffeine in the control of postanesthetic apnea in former premature infants. Anesthesiology 1988; 68: 797–8

    Article  Google Scholar 

  124. Welborn LG, Hannallah RS, Fink R, et al. High-dose caffeine suppresses postoperative apnea in former preterm infants. Anesthesiology 1989; 71: 347–9

    Article  PubMed  CAS  Google Scholar 

  125. Wessberg P, Hedner J, Hedner T, et al. Adenosine mechanisms in the regulation of breathing in the rat. Eur J Pharmacol 1985; 106: 59–67

    Article  Google Scholar 

  126. Ribeiro JA. Adenosine and the central nervous system control of autonomic function. In: Stone TW, editor. Adenosine in the nervous system. London: Academic Press, 1991: 229–46

    Chapter  Google Scholar 

  127. Runold M, Lagercrantz H, Fredholm BB. Ventilatory effects of an adenosine analogue in unanaesthetized rabbits during development. J Appl Physiol 1986; 61: 255–9

    PubMed  CAS  Google Scholar 

  128. Watt AH, Routledge PA. Adenosine stimulates respiration in man. Br J Clin Pharmacol 1985; 20: 503–6

    Article  PubMed  CAS  Google Scholar 

  129. Monteiro EC, Ribeiro JA. Ventillatory effects of adenosine mediated by carotid body chemoreceptors in the rat. Naunyn Schmiedebergs Arch Pharmacol 1987; 335: 143–8

    Article  PubMed  CAS  Google Scholar 

  130. Lagercrantz H. Neuromodulators and respiratory control during development. Trends Neurosci 1987; 10: 368–72

    Article  CAS  Google Scholar 

  131. Heseltine D, Dakkak M, Woodhouse K, et al. The effect of caffeine on postprandial hypotension in the elderly. J Am Geriat Soc 1991; 39: 160–4

    PubMed  CAS  Google Scholar 

  132. Heseltine D, El-Jabri M, Ahmed F, et al. The effects of caffeine on postprandial blood pressure in the frail elderly. Postgrad Med J 1991; 67: 543–7

    Article  PubMed  CAS  Google Scholar 

  133. Lenders JWM, Morre HLC, Smits P. The effects of caffeine on the postprandial fall in blood pressure in the elderly. Age Aging 1988; 17: 236–40

    Article  CAS  Google Scholar 

  134. Onrot J, Goldberg MR, Biaggioni I, et al. Hemodynamic and humoral effects of caffeine in autonomic failure: therapeutic implications for postprandial hypotension. N Engl J Med 1985; 313: 549–54

    Article  PubMed  CAS  Google Scholar 

  135. Hinkle PE, Coffey CE, Weiner RD, et al. Use of caffeine to lengthen seizures in ECT. Am J Psychiatry 1987; 144: 1143–8

    PubMed  CAS  Google Scholar 

  136. Shapira B, Lerer B, Gilboa D, et al. Facilitation of ECT by caffeine pretreatment. Am J Psychiatry 1987; 144: 1199–202

    PubMed  CAS  Google Scholar 

  137. Coffey CE, Figiel S, Weiner RD. Caffeine augmentation of ECT. Am J Psychiatry 1990; 147: 579–5

    PubMed  CAS  Google Scholar 

  138. Lurie SN, Coffey CE. Caffeine-modified electroconvulsive therapy in depressed patients with medical illness. J Clin Psychiatry 1990; 51: 154–7

    PubMed  CAS  Google Scholar 

  139. Ancill RJ, Carlyle W. Oral caffeine augmentation of ECT [letter]. Am J Psychiatry 1992; 149: 137

    PubMed  CAS  Google Scholar 

  140. Dunwiddie TV, Worth T. Sedative and anticonvulsant effects of adenosine analogs in mouse and rat. J Pharmacol Exp Ther 1982; 220: 70–6

    PubMed  CAS  Google Scholar 

  141. Dragunow M. Adenosine and epileptic seizures. In: Phillis JW, editor. Adenosine and adenine nucleotides as regulators of cellular function. Boca Raton: CRC Press, 1991: 367–79

    Google Scholar 

  142. Acheson KJ, Zahorska-Markiewicz B, Pittet P, et al. Caffeine and coffee: their influence on metabolic rate and substrate utilization in normal weight and obese individuals. Am J Clin Nutr 1980; 33: 989–97

    PubMed  CAS  Google Scholar 

  143. Astrup A, Toubro S, Cannon S, et al. Thermogenic, metabolic and cardiovascular effects of caffeine in healthy volunteers: a double-blind placebo-controlled study. Am J Clin Nutr 1990; 51: 759–67

    PubMed  CAS  Google Scholar 

  144. Astrup A, Breum L, Toubro S, et al. The effect and safety of an ephedrine/caffeine compound compared to ephedrine, caffeine and placebo in obese subjects on an energy restricted diet: a double blind trial. Int J Obesity 1992; 16: 269–77

    CAS  Google Scholar 

  145. Toubro S, Astrup AV, Breum L, et al. Safety and efficacy of longterm treatment with ephedrine, caffeine and an ephedrine/caffeine mixture. Int J Obesity 1993; 17 Suppl. 1: S69–72

    Google Scholar 

  146. Krieger DR, Daly PA, Dulloo AG, et al. Ephedrine, caffeine, and aspirin promote weight loss in obese subjects. Trans Assoc Am Physicians 1990; 103: 307–12

    PubMed  CAS  Google Scholar 

  147. Daly PA, Krieger Dr, Dulloo AG, et al. Ephedrine, caffeine and aspirin: safety and efficacy for treatment of human obesity. Int J Obesity 1993; 17 Suppl. 1: S73–8

    Google Scholar 

  148. Curalto PW, Robertson D. The health consequences of caffeine. Ann Int Med 1983; 98: 641–53

    Google Scholar 

  149. Substance related disorders. Diagnostic and statistical manual of mental disorders, 4th ed. Washington, DC: American Psychiatric Association, 1994: 212–5

  150. Boulenger JP, Uhde TW, Wolff EA III, et al. Increased sensitivity to caffeine in patients with panic disorders. Arch Gen Psychiatry 1984; 41: 1067–71

    Article  PubMed  CAS  Google Scholar 

  151. Lee MA, Cameron OG, Greden JF. Anxiety and caffeine consumption in people with anxiety disorders. Psychiatry Res 1985; 15: 211–7

    Article  PubMed  CAS  Google Scholar 

  152. Greden JF. Anxiety or caffeinism: a diagnostic dilemma. Am J Psychiatry 1974; 131: 1089–92

    PubMed  CAS  Google Scholar 

  153. Franceschi S. Coffee and myocardial infarction: review of epidemiological evidence. In: Garattini S, editor. Caffeine, coffee, and health. New York: Raven Press, 1993: 195–211

    Google Scholar 

  154. Heyden S. Coffee and cardiovascular diseases. In: Garrattini S, editor. Caffeine, coffee and health. New York: Raven Press, 1993: 177–93

    Google Scholar 

  155. Leviton A. Coffee, caffeine, and reproductive hazards in humans. In: Garattini S, editor. Caffeine, coffee, and health. New York: Raven Press, 1993: 343–57

    Google Scholar 

  156. La Vecchia C. Coffee and cancer epidemiology. In: Garattini S, editor. Caffeine, coffee, and health. New York: Raven Press, 1993: 379–97

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawynok, J. Pharmacological Rationale for the Clinical Use of Caffeine. Drugs 49, 37–50 (1995). https://doi.org/10.2165/00003495-199549010-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199549010-00004

Keywords

Navigation