Skip to main content
Log in

Taxonomic composition and diversity of microphytobenthos in southern California marine wetland habitats

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Sediments in coastal wetlands host communities of phylogenetically diverse primary producers such as diatoms, cyanobacteria, and anoxygenic photosynthetic bacteria, but little is understood about spatial variation in the composition of these assemblages at the highest taxonomic levels. Using High Performance Liquid Chromatography to quantify taxon-specific pigments, I investigated habitat-linked heterogeneity in microphytobenthic biomass, composition, and diversity within two natural wetland systems from southern California and tested for differences in community structure between natural and restored ecosystems. Natural vegetated habitat at Mission Bay had higher concentrations of zeaxanthin (cyanobacteria) and bacteriochlorophyll a (anoxygenic photobacteria) than unvegetated mudflat and creek banks. Organic matter was positively correlated with the concentrations of these pigments, whereas sediment pore water salinity and sand content were generally unrelated to composition. At Tijuana Estuary, community structure was generally similar between mudflat and Spartina marsh at the natural site, but concentrations of chlorophyll a and fucoxanthin (diatoms) were higher in mudflats. Restored wetland similarity with adjacent natural habitat (age 2 yr at Tijuana Estuary and 6 yr at Mission Bay) depended on habitat type and pigment measure. Restored upper intertidal succulent marsh at Mission Bay was most divergent: it had lower microalgal biomass, a lower concentration of zeaxanthin relative to fucoxanthin, and less bacteriochlorophyll a relative to chlorophyll a than natural habitat. The results suggest that patches of prokaryotic primary producers coincide with areas of high sediment organic matter and/or hypoxia superimposed on a broadly distributed flora of diatoms across various wetland landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Al-Zaidan, A. S. Y., H. Kennedy, D. A. Jones, and S. Y. Al-Mohanna. 2006. Role of microbial mats in Sulaibikhat Bay (Kuwait) mudflat food webs: evidence from δ13C analysis. Marine Ecology Progress Series 308: 27–36.

    Article  CAS  Google Scholar 

  • Armitage, A. R. and P. Fong. 2004. Upward cascading effects of nutrients: shifts in a benthic microalgal community and a negative herbivore response. Oecologia 139: 560–67.

    Article  PubMed  Google Scholar 

  • Austen, I., T. J. Anderson, and K. Edelvang. 1999. The influence of benthic diatoms and invertebrates on the erodibility of an intertidal mudflat, the Danish Wadden Sea. Estuarine Coastal and Shelf Science 49: 99–111.

    Article  CAS  Google Scholar 

  • Brotas, V., T. Cabrita, A. Portugal, J. Serôdio, and F. Catarino. 1995. Spatio-temporal distribution of the microphytobenthic biomass in intertidal flats of Tagus Estuary (Portugal). Hydrobiologia 300/301: 93–104.

    Article  Google Scholar 

  • Brotas, V. and M-R. Plante-Cuny. 1996. Identification et quantification des pigments chlorophylliens et caroténoïdes des sédiments marins: un protocole d’analyse par HPLC. Oceanologica Acta 19: 623–34.

    CAS  Google Scholar 

  • Brotas, V. and M-R. Plante-Cuny. 1998. Spatial and temporal patterns of microphytobenthic taxa of estuarine tidal flats in the Tagus Estuary (Portugal) using pigment analysis by HPLC. Marine Ecology Progress Series 171: 43–57.

    Article  Google Scholar 

  • Brotas, V. and M-R. Plante-Cuny. 2003. The use of HPLC pigment analysis to study microphytobenthos communities. Acta Oecologica 24: S109-S115.

    Article  Google Scholar 

  • Buffan-Dubau, E., R. de Wit, and J. Castel. 1996. Feeding selectivity of the harpacticoid copepod Canuella perplexa in benthic muddy environments demonstrated by HPLC analysis of chlorin and carotenoid pigments. Marine Ecology Progress Series 137: 71–82.

    Article  CAS  Google Scholar 

  • Callaway, R. M. and S. C. Pennings. 2000. Facilitation may buffer competitive effects: indirect and diffuse interactions among salt marsh plants. American Naturalist 156: 416–24.

    Article  Google Scholar 

  • Carpenter, E. J., C. D. Van Raalte, and I. Valiela. 1978. Nitrogen fixation by algae in a Massachusetts salt marsh. Limnology and Oceanography 23: 318–27.

    Article  CAS  Google Scholar 

  • Carver, R. E. 1971. Procedures in Sedimentary Petrology. Wiley & Sons, Inc., New York, NY, USA.

    Google Scholar 

  • Craft, C. B., S. W. Broome, and E. D. Seneca. 1988. Nitrogen, phosphorus and organic carbon pools in natural and transplanted marsh soils. Estuaries 11: 272–80.

    Article  CAS  Google Scholar 

  • Currin, C. A. and H. W. Paerl. 1998. Environmental and physiological controls on diel patterns of N2 fixation in epiphytic cyanobacterial communities. Microbial Ecology 35: 34–45.

    Article  CAS  PubMed  Google Scholar 

  • Decho, A. W. and R. W. Castenholz. 1986. Spatial patterns and feeding of meiobenthic harpacticoid copepods in relation to resident microbial flora. Hydrobiologia 131: 87–96.

    Article  Google Scholar 

  • Edwards, K. R. and C. E. Proffitt. 2003. Comparison of wetland structural characteristics between created and natural salt marshes in southwest Louisiana, USA. Wetlands 23: 344–56.

    Article  Google Scholar 

  • Falkowski, P. G. and J. LaRoche. 1991. Acclimation to spectral irradiance in algae. Journal of Phycology 27: 8–14.

    Article  Google Scholar 

  • Geider, R. J., H. L. MacIntyre, L. M. Graziano, and R. M. McKay. 1998. Responses of photosynthetic apparatus of Dunaliella tertiolecta (Chlorophyceae) to nitrogen and phosphorus limitation. European Journal of Phycology 33: 315–32.

    Article  Google Scholar 

  • Göbel, F. 1978. Quantum efficiencies of growth. p. 907–25. In R. K. Clayton and W. R. Sistrom (eds.) The Photosynthetic Bacteria, Plenum Press, New York, NY, USA.

    Google Scholar 

  • Goericke, R. 2002. Bacteriochlorophyll a in the ocean: is anoxygenic bacterial photosynthesis important? Limnology and Oceanography 47: 290–95.

    Article  CAS  Google Scholar 

  • Guyoneaud, R., R. Matheron, R. Baulaigue, K. Podeur, A. Hirschler, and P. Caumette. 1996. Anoxygenic phototrophic bacteria in eutrophic coastal lagoons of the French Mediterranean and Atlantic coasts (Prévost Lagoon, Archachon Bay, Certes fishponds). Hydrobiologia 329: 33–43.

    Article  CAS  Google Scholar 

  • Hagerthey, S. E., E. C. Defew, and D. M. Paterson. 2002. Influence of Corophium volutator and Hydrobia ulvae on intertidal benthic diatom assemblages under different nutrient and temperature regimes. Marine Ecology Progress Series 245: 47–59.

    Article  Google Scholar 

  • Hays, W. L. 1994. Statistics, fifth edition. Harcourt Brace Publishers, Fort Worth, TX.

    Google Scholar 

  • Hedges, L. V., J. Gurevitch, and P. S. Curtis. 1999. The metaanalysis of response ratios in experimental ecology. Ecology 80: 1150–1156.

    Google Scholar 

  • Ibarra-Obando, S. E. and M. Poumian-Tapia. 1991. The effect of tidal exclusion on salt marsh vegetation in Baja California, Mexico. Wetlands Ecology and Management 1: 131–48.

    Article  Google Scholar 

  • Janousek, C. N. 2005. Functional diversity and composition of microalgae and photosynthetic bacteria in marine wetlands: spatial variation, succession, and influence on productivity. Ph.D. Dissertation, University of California, San Diego, La Jolla, CA, USA.

    Google Scholar 

  • Janousek, C. N., C. A. Currin, and L. A. Levin. 2007. Succession of microphytobenthos in a restored coastal wetland. Estuaries and Coasts 30: 265–76.

    Google Scholar 

  • Javor, B. J. and R. W. Castenholz. 1981. Laminated microbial mats, Laguna Guerrero Negro, Mexico. Geomicrobiology Journal 2: 237–73.

    Article  CAS  Google Scholar 

  • Jeffrey, S. W., R. F. C. Mantoura, and T. Bjørnland. 1997. Data for the identification of 47 key phytoplankton pigments. p. 449–559. In S. W. Jeffrey, R. F. C. Mantoura, and S. W. Wright (eds.) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO, Paris, France.

    Google Scholar 

  • Larson, F. and K. Sundbäck. 2008. Role of microphytobenthos in recovery of functions in a shallow-water sediment system after hypoxic events. Marine Ecology Progress Series 357: 1–16.

    Article  CAS  Google Scholar 

  • Levin, L. A. 1982. The Roles of Life History, Dispersal and Interference Competition in the Population and Community Structure of a Dense Infaunal Polychaete Assemblage. Ph.D. Dissertation. University of California, San Diego, La Jolla, CA, USA.

    Google Scholar 

  • Levin, L. A. and T. S. Talley. 2002. Natural and manipulated sources of heterogeneity controlling early faunal development of a salt marsh. Ecological Applications 12: 1785–1802.

    Article  Google Scholar 

  • Ley, R. E., J. K. Harris, J. Wilcox, J. R. Spear, S. R. Miller, B. M. Bebout, J. A. Maresca, D. A. Bryant, M. L. Sogin, and N. R. Pace. 2006. Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Applied and Environmental Microbiology 72: 3685–95.

    Article  CAS  PubMed  Google Scholar 

  • Loreau, M., S. Naeem, P. Inchausti, J. Bengtsson, J. P. Grime, A. Hector, D. U. Hooper, M. A. Huston, D. Raffaelli, B. Schmid, D. Tilman, and D. A. Wardle. 2001. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294: 804–08.

    Article  CAS  PubMed  Google Scholar 

  • Lucas, C. H. and P. M. Holligan. 1999. Nature and ecological implications of algal pigment diversity on the Molenplaat tidal flat (Westerschelde estuary, SW Netherlands). Marine Ecology Progress Series 180: 51–64.

    Article  Google Scholar 

  • Magurran, A. E. 2004. Measuring Biological Diversity. Blackwell Publishing, Maiden, MA, USA.

    Google Scholar 

  • Marcus, L. 1989. The Coastal Wetlands of San Diego County. California State Coastal Conservancy, CA, USA.

    Google Scholar 

  • Middleburg, J. J., C. Barranguet, H. T. S. Boschker, P. M. J. Herman, T. Moens, and C. H. R. Heip. 2000. The fate of intertidal microphytobenthos carbon: An in situ 13C-labeling study. Limnology and Oceanography 45: 1224–34.

    Article  Google Scholar 

  • Miller, D. C., R. J. Geider, and H. L. MacIntyre. 1996. Microphytobenthos: the ecological role of the “secret garden” of unvegetated shallow-water marine habitats. II. Role in sediment stability and shallow-water food webs. Estuaries 19: 202–12.

    Article  Google Scholar 

  • Moy, L. D. and L. A. Levin. 1991. Are Spartina marshes a replaceable resource? A functional approach to evaluation in marsh creation efforts. Estuaries 14: 1–16.

    Article  Google Scholar 

  • Page, H. M. 1997. Importance of vascular plant and algal production to macro-invertebrate consumers in a southern California salt marsh. Estuarine Coastal and Shelf Science 45: 823–34.

    Article  Google Scholar 

  • Paterek, J. R. and M. J. B. Paynter. 1988. Populations of anaerobic phototrophic bacteria in a Spartina alterniflora salt marsh. Applied and Environmental Microbiology 54: 1360–64.

    PubMed  CAS  Google Scholar 

  • Pinckney, J. and R. G. Zingmark. 1993. Biomass and production of benthic microalgae communities in estuarine habitats. Estuaries 16: 887–97.

    Article  CAS  Google Scholar 

  • Pinckney, J., H. W. Paerl, and M. Fitzpatrick. 1995. Impacts of seasonality and nutrients in microbial mat community structure and function. Marine Ecology Progress Series 123: 207–16.

    Article  Google Scholar 

  • Pinckney, J., Y. Pinceno, and C. R. Lovell. 1994. Short-term changes in the vertical distribution of benthic microalgal biomass in intertidal muddy sediments. Diatom Research 9: 143–53.

    Google Scholar 

  • Plante, R., M-R. Plante-Cuny, and J-P. Reys. 1986. Photosynthetic pigments of sandy sediments on the north Mediterranean coast: their spatial distribution and its effect on sampling strategies. Marine Ecology Progress Series 34: 133–41.

    Article  CAS  Google Scholar 

  • Purer, E. A. 1942. Plant ecology of the coastal salt marshlands of San Diego County, California. Ecological Monographs 12: 81–111.

    Article  Google Scholar 

  • Redfield, A. C. 1972. Development of a New England salt marsh. Ecological Monographs 42: 201–37.

    Article  Google Scholar 

  • Rothrock Jr., M. J. and F. G. Garcia-Pichel. 2002. Community structure and diversity of cyanobacterial and bacterial populations in intertidal microbial mats along a desiccation gradient. Astrobiology 2: 548.

    Google Scholar 

  • Saburova, M. A., I. G. Polikarpov, and I. V. Burkovsky. 1995. Spatial structure of an intertidal sandflat microphytobenthic community as related to different spatial scales. Marine Ecology Progress Series 129: 229–39.

    Article  Google Scholar 

  • Sage, W. W. and M. J. Sullivan. 1978. Distribution of bluegreen algae in a Mississippi gulf coast salt marsh. Journal of Phycology 14: 333–37.

    Article  Google Scholar 

  • Stal, L. J. 2000. Cyanobacterial mats and stromatolites. p. 61–120. In B. A. Whitton and M. Potts (eds.) The Ecology of Cyanobacteria. Their Diversity in Time and Space. Kluwer Academic Publishers, Dordrecht, NE.

    Google Scholar 

  • Stewart, W. D. P. and G. J. F. Pugh. 1963. Blue-green algae of a developing salt marsh. Journal of the Marine Biological Association of the UK 43: 309–17.

    Article  Google Scholar 

  • Sullivan, M. J. 1975. Diatom communities from a Delaware salt marsh. Journal of Phycology 11: 384–90.

    Google Scholar 

  • Sullivan, M. J. 1976. Long-term effects of manipulating light intensity and nutrient enrichment on the structure of a salt marsh diatom community. Journal of Phycology 12: 205–10.

    Google Scholar 

  • Sullivan, M. J. 1977. Edaphic diatom communities associated with Spartina alterniflora and S. patens in New Jersey. Hydrobiologia 52: 207–11.

    Article  Google Scholar 

  • Sullivan, M. J. 1981. Effects of canopy removal and nitrogen enrichment on a Distichlis spicata-edaphic diatom complex. Estuarine Coastal and Shelf Science 13: 119–29.

    Article  Google Scholar 

  • Sullivan, M. J. and C. A. Currin. 2000. Community structure and functional dynamics of benthic microalgae in salt marshes. p. 81–106. In M. P. Weinstein and D. A. Kreeger (eds.) Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishers, Dordrecht, NE.

    Google Scholar 

  • Sullivan, M. J. and C. A. Moncreiff. 1988. Primary production of edaphic algal communities in a Mississippi salt marsh. Journal of Phycology 24: 49–58.

    Google Scholar 

  • Tyler, A. C., K. J. McGlathery, and I. C. Anderson. 2003. Benthic algae control sediment-water column fluxes of organic and inorganic nitrogen compounds in a temperate lagoon. Limnology and Oceanography 48: 2125–37.

    CAS  Google Scholar 

  • Underwood, G. J. C. 1994. Seasonal and spatial variation in epipelic diatom assemblages in the Severn Estuary. Diatom Research 9: 451–72.

    Google Scholar 

  • Underwood, G. J. C. 1997. Microalgal colonization in a salt marsh restoration scheme. Estuarine Coastal and Shelf Science 44: 471–81.

    Article  CAS  Google Scholar 

  • Van Raalte, C. D., I. Valiela, and J. M. Teal. 1976. The effect of fertilization on the species composition of salt marsh diatoms. Water Research 10: 1–4.

    Article  Google Scholar 

  • Waterman, F., H. Hillebrand, G. Gerdes, W. E. Krumbein, and U. Sommer. 1999. Competition between benthic cyanobacteria and diatoms as influenced by different grain sizes and temperatures. Marine Ecology Progress Series 187: 77–87.

    Article  Google Scholar 

  • Whitcraft, C. R. and L. A. Levin. 2007. Regulation of benthic algal and animal communities by salt marsh plants: impact of shading. Ecology 88: 904–17.

    Article  PubMed  Google Scholar 

  • Zedler, J. B. 1977. Salt marsh community structure in the Tijuana Estuary, California. Estuarine Coastal and Marine Science 5: 39–53.

    Article  Google Scholar 

  • Zedler, J. B. 1982. Salt marsh algal mat composition: spatial and temporal comparisons. Bulletin of the Southern California Academy of Sciences 81: 41–50.

    Google Scholar 

  • Zedler, J. B. principal author. 1996. Tidal Wetland Restoration: A Scientific Perspective and Southern California Focus. California Sea Grant College System Report T-038, University of California, La Jolla, CA, USA.

    Google Scholar 

  • Zedler, J. B., J. C. Callaway, and G. Sullivan. 2001. Declining biodiversity: why species matter and how their functions might be restored in Californian tidal marshes. BioScience 51: 1005–17.

    Article  Google Scholar 

  • Zong, Y. and B. P. Horton. 1998. Diatom zones across intertidal flats and coastal saltmarshes in Britain. Diatom Research 13: 375–94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janousek, C.N. Taxonomic composition and diversity of microphytobenthos in southern California marine wetland habitats. Wetlands 29, 163–175 (2009). https://doi.org/10.1672/08-06.1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/08-06.1

Key Words

Navigation