Skip to main content
Log in

New Therapeutic Approach for Myeloid Leukemia: Induction of Apoptosis via Modulation of Reactive Oxygen Species Production by Natural Compounds

  • Progress in Hematology
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

The therapeutic approach to acute myeloid leukemia is based on chemotherapy, but the side effects of the drugs used and various complications, including infections and bleedings, are sometimes fatal. Recently, imatinib mesylate has shown remarkable efficacy and less toxicity as a molecularly targeted therapy in patients with chronic myeloid leukemia. Natural products appear to be safer than the current chemotherapeutic drugs, and we have therefore sought out new potential agents from various natural compounds with the ability to induce the apoptosis of myeloid leukemic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Skipper HE. Thoughts on cancer chemotherapy and combination modality therapy (1974). JAMA. 1974;230:1033–1035.

    Article  CAS  PubMed  Google Scholar 

  2. Huang ME, Ye YC, Chen SR, et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood. 1988;72:567–572.

    CAS  PubMed  Google Scholar 

  3. Tallman MS, Nabhan C, Feusner JH, Rowe JM. Acute promyelocytic leukemia: evolving therapeutic strategies. Blood. 2002;99:759–767.

    Article  CAS  PubMed  Google Scholar 

  4. Goldman JM, Melo JV. Targeting the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344:1084–1086.

    Article  CAS  PubMed  Google Scholar 

  5. Kizaki M, Ueno Y, Yamazoe M, et al. Mechanisms of retinoid resistance in leukemic cells: possible role of cytochrome P450 and P-glycoprotein. Blood. 1996;87:725–733.

    CAS  PubMed  Google Scholar 

  6. Takayama N, Kizaki M,Hida T, Kinjo K, Ikeda YA Novel mutation in the PML/RARα chimeric gene exhibits dramatically decreased ligand-binding activity and confers acquired resistance to retinoic acid in acute promyelocytic leukemia. Exp Hematol. 2001;29:864–872.

    Article  CAS  PubMed  Google Scholar 

  7. Gorre ME, Mohammed M, Ellwood K, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 2001;293:876–880.

    Article  CAS  PubMed  Google Scholar 

  8. Mann J. Natural products in cancer chemotherapy: past, present and future. Nat Rev Cancer. 2002;2:143–148.

    Article  CAS  PubMed  Google Scholar 

  9. Zubrod CG. Origins and development of chemotherapy research at the National Cancer Institute. Cancer Treat Rep. 1984;68:9–19.

    CAS  PubMed  Google Scholar 

  10. Fukuchi Y, Kizaki M, Kinjo K, et al. Establishment of a retinoic acid-resistant acute promyelocytic leukaemia (APL) model in human granulocyte-macrophage colony-stimulating factor (hGM-CSF) transgenic severe combined immunodeficiency (SCID) mice. Br J Cancer. 1998;78:878–884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pisters AMW, Newman RA, Coldman B, et al. Phase I trial of oral green tea extract in adult patients with solid tumors. J Clin Oncol. 2001;19:1830–1838.

    Article  CAS  PubMed  Google Scholar 

  12. Yang CS, Wang ZY. Tea and cancer. J Natl Cancer Inst. 1993;85:1038–1049.

    Article  CAS  PubMed  Google Scholar 

  13. Asano Y, Okamura S, Ogo T, Eto T, Otsuka T, Niho Y Effect of (-)-epigallocatechin gallate on leukemic blast cells from patients with acute myeloblastic leukemia. Life Sci. 1997;60:135–142.

    Article  CAS  PubMed  Google Scholar 

  14. Lea MA, Xiao Q, Sadhukhan AK, Cottle S, Wang ZY, Yang CS. Inhibitory effects of tea extracts and (-)-epigallocatechin gallate on DNA synthesis and proliferation of hepatoma and erythroleukemia cells. Cancer Lett. 1993;68:231–236.

    Article  CAS  PubMed  Google Scholar 

  15. Valcic S,Timmermann BN, Alberts DS, et al. Inhibitory effect of six green tea catechins and caffeine on the growth of four selected human tumor cell lines. Anticancer Drugs. 1996;7:461–468.

    Article  CAS  PubMed  Google Scholar 

  16. Nakazato T, Ito K, Miyakawa Y, et al. Catechin, a green tea component, rapidly induces apoptosis of myeloid leukemic cells via modulation of reactive oxygen species production in vitro and inhibits tumor growth in vivo. Haematologica. 2005;90:317–325.

    CAS  PubMed  Google Scholar 

  17. Kizaki M, Matsushita H, Takayama N, et al. Establishment and characterization of a novel acute promyelocytic leukemia cell line (UF-1) with retinoic acid-resistant features. Blood. 1996;88:1824–1833.

    CAS  PubMed  Google Scholar 

  18. Kinjo K, Kizaki M, Nuto A, et al. Arsenic trioxide (As2O3)-induced apoptosis and differentiation in retinoic acid-resistant acute promyelocytic leukemia model in hGM-CSF-producing transgenic SCID mice. Leukemia. 2000;14:431–438.

    Article  CAS  PubMed  Google Scholar 

  19. Nakazato T, Ito K, Ikeda Y, Kizaki M. A green tea component, catechin, induces apoptosis of human malignant B cells via production of reactive oxygen species (ROS). Clin Cancer Res. 2005;11:6040–6049.

    Article  CAS  PubMed  Google Scholar 

  20. Monsereenusorn Y, Kongsamut S, Pezalla PD. Capsaicin: a literature survey. Crit Rev Toxicol. 1982;10:321–339.

    Article  CAS  PubMed  Google Scholar 

  21. Lopez-Carrillo L, Hernandez Avila M, Dubrow R. Chili pepper consumption and gastric cancer in Mexico: a case-control study. Am J Epidemiol. 1994;139:263–271.

    Article  CAS  PubMed  Google Scholar 

  22. Surh YJ, Lee SS. Capsaicin, a double-edged sword: toxicity, metabolism, and chemopreventive potential. Life Sci. 1995;56:1845–1855.

    Article  CAS  PubMed  Google Scholar 

  23. Park KK, Surh YJ. Effects of capsaicin on chemically-induced two-stage mouse skin carcinogenesis. Cancer Lett. 1997;114:183–184.

    Article  CAS  PubMed  Google Scholar 

  24. Yun TK. Update from Asia:Asian studies on cancer chemoprevention. Ann N Y Acad Sci. 1999;889:157–192.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Z, Hamilton SM, Stewart C, Strother A, Teel RW. Inhibition of liver microsomal cytochrome P450 activity and metabolism of the tobacco-specific nitrosamine NNK by capsaicin and ellagic acid. Anticancer Res. 1993;13:2341–2346.

    CAS  PubMed  Google Scholar 

  26. Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 1995;80:293–299.

    Article  CAS  PubMed  Google Scholar 

  27. Toth B, Rogan E,Walker B. Tumorigenicity and mutagenicity studies with capsaicin of hot peppers. Anticancer Res. 1984;4:117–119.

    CAS  PubMed  Google Scholar 

  28. Agrawal RC, Bhide SV. Biological studies on carcinogenicity of chillies in Balb/c mice. Indian J Med Res. 1987;86:391–396.

    CAS  PubMed  Google Scholar 

  29. Surh YJ, Lee BC, Park KK, Mayne ST, Liem A, Miller JA. Chemo-protective effects of capsaicin and diallyl sulfide against mutagenesis or tumorigenesis by vinyl carbamate and N-nitrosodimethy-lamine. Carcinogenesis. 1995;16:2467–2471.

    Article  CAS  PubMed  Google Scholar 

  30. Modly CE,Das M, Don PSC, Marcelo CL,Mukhtar H, Bickers DR. Capsaicin as an in vitro inhibitor of benzo(a)pyrene metabolism and its DNA binding in human and murine keratinocytes. Drug Metab Dispos. 1986;14:413–416.

    CAS  PubMed  Google Scholar 

  31. Teel RW. Effects of capsaicin on rat liver S9-mediated metabolism and DNA binding of aflatoxin. Nutr Cancer. 1991;15:27–32.

    Article  CAS  PubMed  Google Scholar 

  32. Richeux F, Cascante M, Ennamany R, Saboureau D, Creppy EE. Cytotoxicity and genotoxicity of capsaicin in human neuroblastoma cells SHSY-5Y. Arch Toxicol. 1999;73:403–409.

    Article  CAS  PubMed  Google Scholar 

  33. Lee YS, Nam DH, Kim JA. Induction of apoptosis by capsaicin in A172 human glioblastoma cells. Cancer Lett. 2000;161:121–130.

    Article  CAS  PubMed  Google Scholar 

  34. Jung MY, Kang HJ, Moon A. Caspase-induced apoptosis in SK-Hep-1 hepatocarcinoma cells involves Bcl-2 downregulation and caspase-3 activation. Cancer Lett. 2001;165:139–145.

    Article  CAS  PubMed  Google Scholar 

  35. Ko LJ, Prives C. p53: puzzle and paradigm. Genes Dev. 1996;10:1054–1072.

    Article  CAS  PubMed  Google Scholar 

  36. Shieh SY, Taya Y, Prives C. DNA damage-inducible phosphorylation of p53 at N-terminal sites including a novel site, Ser 20, requires tetramerization. EMBO J. 1999;18:1815–1823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shieh SY, Ikeda M, Taya Y, Prives C. DNA damage-induced phos-phorylation of p53 alleviates inhibition by MDM2. Cell. 1997;91:325–334.

    Article  CAS  PubMed  Google Scholar 

  38. Momand J, Zambetti GP, Olson DC, George D, Levine AJ. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell. 1992;69:1237–1245.

    Article  CAS  PubMed  Google Scholar 

  39. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell. 1997;88:323–331.

    Article  CAS  PubMed  Google Scholar 

  40. Jimenez GS, Khan SH, Stommel JM, Wahl GM. p53 regulation by post-translational modification and nuclear retention in response to diverse stresses. Oncogene. 1999;18:7656–7665.

    Article  CAS  PubMed  Google Scholar 

  41. Canman CE, Lim DS, Cimprich KA, et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science. 1998;281:1677–1679.

    Article  CAS  PubMed  Google Scholar 

  42. Nakagawa K, Taya Y, Tamai K, Yamaizumi M. Requirement of ATM in phosphorylation of the human p53 protein at serine 15 following DNA double-strand breaks. Mol Cell Biol. 1999;19:2828–2834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Migliaccio E, Giorgio M, Mele S, et al. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature. 1999;402:309–313.

    Article  CAS  PubMed  Google Scholar 

  44. Li PF, Dietz R, von Harsdorf R. p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2. EMBO J. 1999;18:6027–6036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xie S, Wang Q, Wu H, et al. Reactive oxygen species-induced phosphorylation of p53 on serine 20 is mediated in part by polo-like kinase-3. J Biol Chem. 2001;276:36194–36199.

    Article  CAS  PubMed  Google Scholar 

  46. Banin S, Moyal L, Shieh S, et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science. 1998;281:1674–1677.

    Article  CAS  PubMed  Google Scholar 

  47. Tibbetts RS, Brumbaugh KM, Williams JM,et al. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev. 1999;13:152–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ito K, Nakazato T, Yamato K, et al. Induction of apoptosis in leukemic cells by homovanillic acid derivative, capsaicin, through oxidative stress: implication of phosphorylation of p53 at Ser-15 residue by reactive oxygen species. Cancer Res. 2004;64:1071–1078.

    Article  CAS  PubMed  Google Scholar 

  49. Kondo A, Ohigashi H, Murakami A, Jiwajinda S, Koshimizu K. A potent inhibitor of tumor promoter-induced Epstein-Barr virus activation, 1′-acetoxychavichol acetate from Languas galanga, a traditional Thai condiment. Biosci Biotechnol Biochem. 1993;57:1344–1345.

    Article  CAS  Google Scholar 

  50. Ohnishi M,Tanaka T, Makita H, et al. Chemopreventive effect of a xanthine oxidase inhibitor, 1′-acetoxychavicol acetate, on rat oral carcinogenesis. Jpn J Cancer Res. 1996;87:349–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Moffatt J, Hashimoto M, Kojima A, et al. Apoptosis induced by 1′-acetoxychavicol acetate in Ehrlich ascites tumor cells is associated with modulation of polyamine metabolism and caspase-3 activation. Carcinogenesis. 2000;21:2151–2157.

    Article  CAS  PubMed  Google Scholar 

  52. Nakamura A, Murakami A, Ohto K,Torikai T,Tanaka T, Ohigashi H. Suppression of tumor promoter-induced oxidative stress and inflammatory responses in mouse skin by a superoxide generation inhibitor 1′-acetoxychavicol acetate. Cancer Res. 1998;58:4832–4839.

    CAS  PubMed  Google Scholar 

  53. Murakami A, Ohura S, Nakamura Y, Koshimizu K, Ohigashi H. 1′-acetoxychavicol acetate, a superoxide anion generation inhibitor, potently inhibits tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in ICR mouse skin. Oncology. 1996;53:386–391.

    Article  CAS  PubMed  Google Scholar 

  54. Tanaka T, Makita H, Kawamori T, et al. A xanthine oxidase inhibitor 1′-acetoxychavicol acetate inhibits azoxymethane-induced colonic aberrant crypt foci in rats. Carcinogenesis. 1997;18:1113–1118.

    Article  CAS  PubMed  Google Scholar 

  55. Tanaka T, Kawabata K, Kakumoto M, et al. Chemoprevention of azoxymethane-induced rat colon carcinogenesis by a xanthine oxidase inhibitor, 1′-acetoxychavicol acetate. Jpn J Cancer Res. 1997;88:821–830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pence CB, Reiners JJ {jrJr.} Murine epidermal xanthine oxidase activity: correlation with degree of hyperplasia induced by tumor promoters. Cancer Res. 1987;47:6388–6392.

    CAS  PubMed  Google Scholar 

  57. Ito K, Nakazato T, Murakami A, et al. Induction of apoptosis in human myeloid leukemic cells by 1′-acetoxychavicol acetate through a mitochondrial- and Fas-mediated dual mechanism. Clin Cancer Res. 2004;10:2120–2130.

    Article  CAS  PubMed  Google Scholar 

  58. Ito K, Nakazato T, Xian MJ, et al. 1′-acetoxychavicol acetate is a novel nuclear factor κB inhibitor with significant activity against multiple myeloma in vitro and in vivo. Cancer Res. 2005;65:4417–4424.

    Article  CAS  PubMed  Google Scholar 

  59. Muto A, Kizaki M, Kawamura C, et al. A novel differentiation-inducing therapy for acute promyelocytic leukemia with a combination of arsenic trioxide and GM-CSF. Leukemia. 2001;15:1176–1184.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Kizaki.

About this article

Cite this article

Kizaki, M. New Therapeutic Approach for Myeloid Leukemia: Induction of Apoptosis via Modulation of Reactive Oxygen Species Production by Natural Compounds. Int J Hematol 83, 283–288 (2006). https://doi.org/10.1532/IJH97.06022

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1532/IJH97.06022

Key words

Navigation