Skip to main content
Log in

Molecular Signatures of Lymphoma

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Hematologic malignancies have historically been characterized by morphologic, immunophenotypic, molecular, and genetic features. However, morphologically identical tumors can have clearly distinct clinical outcomes, suggesting underlying biological heterogeneity. Recent advances in microarray technology have helped the classification of lymphoid malignancies evolve to a new refined level. In addition to the discovery of new disease subclasses defined by unique molecular profiles, gene expression patterns can be correlated with specific genetic abnormalities and prognoses. Furthermore, the discovery of new disease subtypes has provided further insight into lymphoma biology and pathogenesis. Unique gene signatures can highlight key deregulated pathways that are active in molecular disease categories, and in some cases these findings have elucidated new targets for novel therapeutic approaches. This review summarizes the current status of molecular profiling in non-Hodgkin lymphomas. In this review, we have endeavored to include data from multiple investigator groups and tried to cover the breadth of lymphoid tumors, excluding acute and chronic leukemias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ramaswamy S, Golub TR. DNA microarrays in clinical oncology. J Clin Oncol. 2002;20(7):1932–1941.

    Article  CAS  PubMed  Google Scholar 

  2. Braziel RM, Shipp MA, Feldman AL, et al. Molecular diagnostics [review]. Hematology (Am Soc Hematol Educ Program). 2003;279–293.

    Article  Google Scholar 

  3. Fisher RI, Gayner ER, Dahlberg S, et al. Comparison of a standard regimen (CHOP) with three intensive chemotherapy regimens for advanced non-Hodgkin’s lymphoma. N Engl J Med. 1993;328(14):1002–1006.

    Article  CAS  PubMed  Google Scholar 

  4. Shipp M, Harrington D, Anderson J, et al. A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med. 1993;329:987–994.

    Article  Google Scholar 

  5. Alizadeh A, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;4051:503–511.

    Article  CAS  Google Scholar 

  6. Rosenwald A, Wright G, Chan WC, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large- B-cell lymphoma. N Engl J Med. 2002;346(25):1937–1947.

    Article  PubMed  Google Scholar 

  7. Wright G, Tan B, Rosenwald A, Hurt EH, Wiestner A, Staudt LM. A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc Natl Acad Sci US A 2003;100(17):9991–9996.

    Article  CAS  Google Scholar 

  8. Lossos IS, Alizadeh AA, Eisen MB, et al. Ongoing immunoglobu- lin somatic mutation in germinal center B cell-like but not in activated B cell-like diffuse large cell lymphomas. Proc Natl Acad Sci USA. 2000;97(18):10209–10213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Davis RE, Brown KD, Siebenlist U, Staudt LM. Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J Exp Med. 2001; 194(12):1861–1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shipp MA, Ross KN, Tamayo P, et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med. 2002;8(1):68–74.

    Article  CAS  PubMed  Google Scholar 

  11. Hans CP, Weisenburger DD, GreinerTC, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004; 103(1):275–282.

    Article  CAS  PubMed  Google Scholar 

  12. Lossos IS, Cerwinski DK, Alizadeh AA, et al. Prediction of survival in diffuse large-B-cell lymphoma based on the expression of six genes. N Engl J Med. 2004;350(18):1828–1837.

    Article  CAS  PubMed  Google Scholar 

  13. Ramaswamy S. Translating cancer genomics into clinical oncology. N Engl J Med. 2004;350(18):1814–1816.

    Article  CAS  PubMed  Google Scholar 

  14. Mizuno T, Nagamura H, Iwamoto KS, et al. RNA from decades-old archival tissue blocks for retrospective studies. Diagn Mol Pathol. 1998;7(4):202–208.

    Article  CAS  PubMed  Google Scholar 

  15. Wilson KS, Sehn LH, Berry B, et al. CHOP-R therapy overcomes the adverse prognostic influence of BCL-2 expression in diffuse large B-cell lymphoma. J Clin Oncol. 2004;22,14S (July 15 Supple- ment):Abstract 6526.

    Article  Google Scholar 

  16. Harris NL, Jaffe ES, Stein H, et al. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group [see comments]. Blood. 1994;84(5):1361–1392.

    PubMed  CAS  Google Scholar 

  17. Banks PM, Warnke RA. Mediastinal (thymic) large B-cell lymphoma. In Jaffe ES, Harris NL, Stein H, Vardiman JW, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Hematopoetic and Lymphoid Tissues. Lyron: IARC Press; 2001:175–178.

    Google Scholar 

  18. Isaacson P, Norton A, Addis B. The human thymus contains a novel population of B-lymphocytes. Lancet. 1987;ii:1488–1490.

    Article  Google Scholar 

  19. Barth TF, Leithauser F, Joos S, Bentz M, Moller P. Mediastinal (thymic) large B-cell lymphoma: where do we stand? Lancet Oncol. 2002;3(4):229–234.

    Article  PubMed  Google Scholar 

  20. Bentz M, Barth TF, Bruderlein S, et al. Gain of chromosome arm 9p is characteristic of primary mediastinal B-cell lymphoma (MBL): comprehensive molecular cytogenetic analysis and presentation of a novel MBL cell line. Genes Chromosomes Cancer. 2001; 30(4):393–401.

    Article  CAS  PubMed  Google Scholar 

  21. Joos S, Otano-Joos MI, Ziegler S. et al. Primary mediastinal (thymic) B-cell lymphoma is characterized by gains of chromosomal material including 9p and amplification of the REL gene. Blood. 1996;87(4):1571–1578.

    PubMed  CAS  Google Scholar 

  22. Rosenwald A, Wright G, Leroy K, et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med. 2003;198(6):851–862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Joos S, Kupper M, Ohl S, et al. Genomic imbalances including amplification of the tyrosine kinase gene JAK2 in CD30+ Hodgkin cells. Cancer Res. 2000;60(3):549–552.

    PubMed  CAS  Google Scholar 

  24. Joos S, Granzow M, Holtgreve-Grez H, et al. Hodgkin’s lymphoma cell lines are characterized by frequent aberrations on chromo- somes 2p and 9p including REL and JAK2. Int J Cancer. 2003; 103(4):489–495.

    Article  CAS  PubMed  Google Scholar 

  25. Savage KJ, Monti S, Kutok JL, et al. The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma. Blood. 2003;102(12):3871–3879.

    Article  CAS  PubMed  Google Scholar 

  26. Guiter C, Dusanter-Fourt I, Copie-Bergman C, et al. Constitutive STAT6 activation in primary mediastinal large B-cell lymphoma. Blood. 2004;104(2):543–549.

    Article  CAS  PubMed  Google Scholar 

  27. Bargou RC, Emmerich F, Krappmann D, et al. Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin’s disease tumor cells. J Clin Invest. 1997; 100(12):2961–2969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Klein U, Gloghini A, Chadburn A, et al. Gene expression profile analysis of AIDS-related primary effusion lymphoma (PEL) suggests a plasmablastic derivation and identifies PEL-specific transcripts. Blood. 2003;101(10):4115–4121.

    Article  CAS  PubMed  Google Scholar 

  29. Swerdlow S, Berger F, Isaacson PL, et al. Mantle cell lymphoma. In Jaffe ES, Harris NL, Stein H, Vardiman JW, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Hematopoetic and Lymphoid Tissues. Lyon: IARC Press; 2001:168–170.

    Google Scholar 

  30. Rosenwald A, Wright G, Wiestner A, et al. The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell. 2003;3(2):185–197.

    Article  CAS  PubMed  Google Scholar 

  31. Martinez N, Camacho FI, Algara P, et al. The molecular signature of mantle cell lymphoma reveals multiple signals favoring cell survival. Cancer Res. 2003;63(23):8226–8232.

    PubMed  CAS  Google Scholar 

  32. Lamb J, Ramaswamy S, Ford HL, et al. A mechanism of cyclin D1 action encoded in the patterns of gene expression in human cancer. Cell. 2003;114(3):323–334.

    Article  CAS  PubMed  Google Scholar 

  33. Husson H, Carideo EG, Neuberg D, et al. Gene expression profiling of follicular lymphoma and normal germinal center B cells using cDNA arrays. Blood. 2002;99(1):282–289.

    Article  CAS  PubMed  Google Scholar 

  34. Lestou VS, Gascoyne RD, Sehn L, et al. Multicolour fluorescence in situ hybridization analysis of t(14;18)-positive follicular lymphoma and correlation with gene expression data and clinical outcome. Br J Haematol. 2003;122(5):745–759.

    Article  CAS  PubMed  Google Scholar 

  35. Dave SS, Wright G, Tan B, et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med. 2004;351(21):2159–2169.

    Article  CAS  PubMed  Google Scholar 

  36. Horning S, Rosenberg S. The natural history of initially untreated low-grade non-Hodgkin’s lymphomas. N Engl J Med. 1984;311(23):1471–1481.

    Article  CAS  PubMed  Google Scholar 

  37. Lerner RE, Burns LJ. Transformed lymphoma: an Achilles’ heel of non-Hodgkin’s lymphoma. Bone Marrow Transplant. 2003;31(7):531–537.

    Article  CAS  PubMed  Google Scholar 

  38. Elenitoba-Johnson KS, Jenson SD, Abbott RT, et al. Involvement of multiple signaling pathways in follicular lymphoma transformation: p38-mitogen-activated protein kinase as a target for therapy. Proc Natl Acad Sci USA. 2003;100(12):7259–7264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lossos IS, Alizadeh AA, Diehn M, et al. Transformation of follicular lymphoma to diffuse large-cell lymphoma: alternative patterns with increased or decreased expression of c-myc and its regulated genes. Proc Natl Acad Sci USA. 2002;99(13):8886–8891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Martinez-Climent JA, Alizadeh AA, Segraves R, et al. Transformation of follicular lymphoma to diffuse large cell lymphoma is associated with a heterogeneous set of DNA copy number and gene expression alterations. Blood. 2003.101(8):3109–3117.

    Article  CAS  PubMed  Google Scholar 

  41. Armitage J, for the Non-Hodgkin’s Lymphoma Classification Project. A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin’s lymphoma. Blood. 1997;89: 3909–3918.

    Google Scholar 

  42. Martinez-Delgado B, Melendez B, Cuadros M, et al. Expression profiling of T-cell lymphomas differentiates peripheral and lym- phoblastic lymphomas and defines survival related genes. Clin Cancer Res. 2004;10(15):4971–4982.

    Article  CAS  PubMed  Google Scholar 

  43. Storz M, Zepter K, Kamarashev J, et al. Coexpression of CD40 and CD40 ligand in cutaneous T-cell lymphoma (mycosis fungoides). Cancer Res. 2001;61(2):452–454.

    PubMed  CAS  Google Scholar 

  44. Kari L, Loboda A, Nebozhyn M, et al. Classification and prediction of survival in patients with the leukemic phase of cutaneous T cell lymphoma. J Exp Med. 2003;197(11):1477–1488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerry J. Savage.

About this article

Cite this article

Savage, K.J., Gascoyne, R.D. Molecular Signatures of Lymphoma. Int J Hematol 80, 401–409 (2004). https://doi.org/10.1532/IJH97.04133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1532/IJH97.04133

Key words

Navigation