Skip to main content
Log in

Aerodynamic Droplet Stream Expansion for the Production of Spray Freeze-Dried Powders

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

In spray freeze-srying (SFD), a solution is sprayed into a refrigerant medium, frozen, and subsequently sublimation dried, which allows the production of flowable lyophilized powders. SFD allows commonly freeze-dried active pharmaceutical ingredients (e.g., proteins and peptides) to be delivered using new applications such as needle-free injection and nasal or pulmonary drug delivery. In this study, a droplet stream was injected into a vortex of cold gas in order to reduce the risk of droplet collisions and therefore droplet growth before congelation, which adversely affects the particle size distribution. Droplets with initial diameters of about 40–50 μm were frozen quickly in a swirl tube at temperatures around −75°C and volumetric gas flow rates between 17 and 34 L/min. Preliminary studies that were focused on the evaluation of spray cone footprints were performed prior to SFD. A 23 factorial design with a model solution of mannitol (1.5% m/V) and maltodextrin (1.5% m/V) was used to create flowable, low density (0.01–0.03 g/cm3) spherical lyophilisate powders. Mean particle diameter sizes of the highly porous particles ranged between 49.8 ± 6.6 and 88.3 ± 5.5 μm. Under optimal conditions, the mean particle size was reduced from 160 to 50 μm (decrease of volume by 96%) compared to non-expanded streams, whereas the SPAN value did not change significantly. This method is suitable for the production of lyophilized powders with small particle sizes and narrow particle size distributions, which is highly interesting for needle-free injection or nasal delivery of proteins and peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wanning S, Süverkrüp R, Lamprecht A. Pharmaceutical spray freeze drying. Int J Pharm. 2015;488(1–2):136–53.

    Article  CAS  PubMed  Google Scholar 

  2. Schiffter H, Condliffe J, Vonhoff S. Spray-freeze-drying of nanosuspensions: the manufacture of insulin particles for needle-free ballistic powder delivery. J R Soc Interface. 2010;7(Suppl_4):S483–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang SH, Kirwan SM, Abraham SN, Staats HF, Hickey AJ. Stable Dry powder formulation for nasal delivery of anthrax vaccine. J Pharm Sci. 2012;101(1):31–47.

    Article  CAS  PubMed  Google Scholar 

  4. Bi R, Shao W, Wang Q, Zhang N. Spray-freeze-dried dry powder inhalation of insulin-loaded liposomes for enhanced pulmonary delivery. J Drug Target. 2008;16(9):639–48.

    Article  CAS  PubMed  Google Scholar 

  5. Eggerstedt SN, Dietzel M, Sommerfeld M, Süverkrüp R, Lamprecht A. Protein spheres prepared by drop jet freeze drying. Int J Pharm. 2012;438(1–2):160–6.

    Article  CAS  PubMed  Google Scholar 

  6. Hu J, Johnston KP, Williams RO. Spray freezing into liquid (SFL) particle engineering technology to enhance dissolution of poorly water soluble drugs: organic solvent versus organic/aqueous co-solvent systems. Eur J Pharm Sci. 2003;20(3):295–303.

    Article  CAS  PubMed  Google Scholar 

  7. Maa Y-F, Nguyen P-A, Sweeney T, Shire SJ, Hsu CC. Protein inhalation powders: spray drying vs spray freeze drying. Pharm Res. 1999;16(2):249–54.

    Article  CAS  PubMed  Google Scholar 

  8. Ali ME, Lamprecht A. Spray freeze drying for dry powder inhalation of nanoparticles. Eur J Pharm Biopharm. 2014;87(3):510–7.

    Article  CAS  PubMed  Google Scholar 

  9. Eggerstedt S. Sprühgefriertrocknung zur Herstellung von Protein-Inhalanda [Dissertation]. Rheinische Friedrich-Wilhelms-Universität Bonn; 2014.

  10. Niwa T, Mizutani D, Danjo K. Spray freeze-dried porous microparticles of a poorly water-soluble drug for respiratory delivery. Chem Pharm Bull (Tokyo). 2012;60(7):870–6.

    Article  CAS  Google Scholar 

  11. Mueannoom W, Srisongphan A, Taylor KMG, Hauschild S, Gaisford S. Thermal ink-jet spray freeze-drying for preparation of excipient-free salbutamol sulphate for inhalation. Eur J Pharm Biopharm. 2012;80(1):149–55.

    Article  CAS  PubMed  Google Scholar 

  12. Sharma G, Mueannoom W, Buanz ABM, Taylor KMG, Gaisford S. In vitro characterisation of terbutaline sulphate particles prepared by thermal ink-jet spray freeze drying. Int J Pharm. 2013;447(1–2):165–70.

    Article  CAS  PubMed  Google Scholar 

  13. Rochelle C. Spray-freeze-dried powders for needle-free injection [Dissertation]. Friedrich-Alexander-Universität Erlangen-Nürnberg; 2005.

  14. Maa Y-F, Ameri M, Shu C, Payne LG, Chen D. Influenza vaccine powder formulation development: spray-freeze-drying and stability evaluation. J Pharm Sci. 2004;93(7):1912–23.

    Article  CAS  PubMed  Google Scholar 

  15. Süverkrüp R, Eggerstedt SN, Gruner K, Kuschel M, Sommerfeld M, Lamprecht A. Collisions in fast droplet streams for the production of spherolyophilisates. Eur J Pharm Sci. 2013;49(4):535–41.

    Article  PubMed  Google Scholar 

  16. Süverkrüp R, Eggerstedt S, Wanning S, Kuschel M, Sommerfeld M, Lamprecht A. Collisions and coalescence in droplet streams for the production of freeze-dried powders. Colloids Surf B. 2016;141:443–9.

    Article  Google Scholar 

  17. Rasband WS, ImageJ US. National Institutes of Health, Bethesda, Maryland, USA. 1997–2016. http://imagej.nih.gov/ij/.

  18. Walzel P. Zerstäuben von Flüssigkeiten. Chem Ing Tech. 1990;62(12):983–94.

    Article  CAS  Google Scholar 

  19. Garmise RJ, Staats HF, Hickey AJ. Novel dry powder preparations of whole inactivated influenza virus for nasal vaccination. AAPS PharmSciTech. 2007;8(4):2–10.

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of the “Deutsche Forschungsgemeinschaft” (DFG) in the framework of SPP1423 (grant no. LA1362/2-1) and would also like to thank Franz-Josef Willems, Thomas Vidua, and Jürgen Hohmann for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alf Lamprecht.

Ethics declarations

Conflict of Interest

R. Süverkrüp: German Patent Application # 2015 0409 11542100 DE “Vorrichtung und Verfahren zur Erzeugung monodisperser gefrorener Tropfen”

(Apparatus and method for the generation of mono-disperse frozen droplets)

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Epicyclical positioner. a Scheme. b View (JPG 145 kb)

ESM 1

(GIF 4747 kb)

High-resolution image (TIF 2108 kb)

Fig. S2

Spray cone expansion test setup. 1. Droplet generator. 2. Epicyclical positioner. 3. Swirl tube. 4. Shutter surfaces. 5. Target surface (GIF 8493 kb)

High-resolution image (TIF 11929 kb)

Supplementary Table S1

Results (DOC 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wanning, S., Süverkrüp, R. & Lamprecht, A. Aerodynamic Droplet Stream Expansion for the Production of Spray Freeze-Dried Powders. AAPS PharmSciTech 18, 1760–1769 (2017). https://doi.org/10.1208/s12249-016-0648-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0648-2

KEY WORDS

Navigation