Skip to main content

Advertisement

Log in

Buccal Dosage Forms: General Considerations for Pediatric Patients

  • Review Article
  • Theme: Pediatric Drug Development and Dosage Form Design
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

ABSTRACT

The development of an appropriate dosage form for pediatric patients needs to take into account several aspects, since adult drug biodistribution differs from that of pediatrics. In recent years, buccal administration has become an attractive route, having different dosage forms under development including tablets, lozenges, films, and solutions among others. Furthermore, the buccal epithelium can allow quick access to systemic circulation, which could be used for a rapid onset of action. For pediatric patients, dosage forms to be placed in the oral cavity have higher requirements for palatability to increase acceptance and therapy compliance. Therefore, an understanding of the excipients required and their functions and properties needs to be particularly addressed. This review is focused on the differences and requirements relevant to buccal administration for pediatric patients (compared to adults) and how novel dosage forms can be less invasive and more acceptable alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. Batchelor H. Paediatric development: anatomy. Age, weight, body surface and stature, organ development. In: Bar-Shalom D, Rose K, editors. Pediatric formulations. New York: Springer; 2014. p. 3–7.

    Chapter  Google Scholar 

  2. Rathbone M, Senel S, Pather I. Oral mucosal drug delivery and therapy. Springer 2015.

  3. de Boer DAG, Moolenaar F, de Leede LGJ, Breimer DD. Rectal drug administration. Clin Pharmacokinet. 2012;7:285–311.

    Article  Google Scholar 

  4. Lam JKW, Xu Y, Worsley A, Wong ICK. Oral transmucosal drug delivery for pediatric use. Adv Drug Deliv Rev. 2014;73:50–62.

    Article  CAS  PubMed  Google Scholar 

  5. Şenel S, Rathbone MJ, Cansız M, Pather I. Recent developments in buccal and sublingual delivery systems. Expert Opin Drug Deliv. 2012;9:615–28.

    Article  PubMed  CAS  Google Scholar 

  6. Morales JO, McConville JT. Manufacture and characterization of mucoadhesive buccal films. Eur J Pharm Biopharm. 2011;77:187–99.

    Article  CAS  PubMed  Google Scholar 

  7. Silva BMA, Borges AF, Silva C, Coelho JFJ, Simoes S. Mucoadhesive oral films: the potential for unmet needs. Int J Pharm. 2015;494:537–51.

    Article  CAS  PubMed  Google Scholar 

  8. Pather SI, Rathbone MJ, Senel S. Current status and the future of buccal drug delivery systems. Expert Opin Drug Deliv. 2008;5:531–42.

    Article  CAS  PubMed  Google Scholar 

  9. Patel VF, Liu F, Brown MB. Advances in oral transmucosal drug delivery. J Control Release. 2011;153:106–16.

    Article  CAS  PubMed  Google Scholar 

  10. Delgado-Guay MO. Efficacy and safety of fentanyl buccal for cancer pain management by administration through a soluble film: an update. Cancer Manag Res. 2010;2:303–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rauck RL, Potts J, Xiang Q, Tzanis E, Finn A. Efficacy and tolerability of buccal buprenorphine in opioid-naive patients with moderate to severe chronic low back pain. Postgrad Med. 2016;128:1–11.

    Article  PubMed  Google Scholar 

  12. Gunderson EW. Recognizing potential buprenorphine medication misuse: product packaging does not degrade with laundering. Subst Abus. 2015;36:161–5.

    Article  PubMed  Google Scholar 

  13. Stecker SS, Swift JQ, Hodges JS, Erickson PR. Should a mucoadhesive patch (DentiPatch) be used for gingival anesthesia in children? Anesth Prog. 2002;49:3–8.

    PubMed  PubMed Central  Google Scholar 

  14. Collins LM, Dawes C. The surface area of the adult human mouth and thickness of the salivary film covering the teeth and oral mucosa. J Dent Res. 1987;66:1300–2.

    Article  CAS  PubMed  Google Scholar 

  15. de Vries ME, Boddé HE, Verhoef JC, Junginger HE. Developments in buccal drug delivery. Crit Rev Ther Drug Carrier Syst. 1991;8:271–303.

    PubMed  Google Scholar 

  16. Squier CA, Nanny D. Measurement of blood flow in the oral mucosa and skin of the rhesus monkey using radiolabelled microspheres. Arch Oral Biol. 1985;30:313–8.

    Article  CAS  PubMed  Google Scholar 

  17. Shojaei AH. Buccal mucosa as a route for systemic drug delivery: a review. J Pharm Pharm Sci. 1998;1:15–30.

    CAS  PubMed  Google Scholar 

  18. Nanci A. Oral mucosa. In: Ten Cate’s oral histology: development, structure, and function, 8th edition. Elsevier Health Sciences. 2014, 278–310.

  19. Squier CA, Wertz PW. Permeability and the pathophysiology of oral mucosa. Adv Drug Deliv Rev. 1993;12:13–24.

    Article  Google Scholar 

  20. Takenaka T, Harada N, Kuze J, Chiba M, Iwao T, Matsunaga T. Human small intestinal epithelial cells differentiated from adult intestinal stem cells as a novel system for predicting oral drug absorption in humans. Drug Metab Dispos. 2014;42:1947–54.

    Article  PubMed  CAS  Google Scholar 

  21. Wertz PW, Swartzendruber DC, Squier CA. Regional variation in the structure and permeability of oral mucosa and skin. Adv Drug Deliv Rev. 1993;12:1–12.

    Article  Google Scholar 

  22. Ehrhardt C, Kim K-J. Drug absorption studies: in situ, in vitro and in silico models. Springer Science & Business Media. 2007.

  23. Rathbone MJ, Hadgraft J. Absorption of drugs from the human oral cavity. Int J Pharm. 1991;74:9–24.

    Article  CAS  Google Scholar 

  24. Nicolazzo JA, Reed BL, Finnin BC. Buccal penetration enhancers—how do they really work? J Control Release. 2005;105:1–15.

    Article  CAS  PubMed  Google Scholar 

  25. Shklar G. The effects of aging upon oral mucosa. J Investigat Dermatol. 1966;47:115–20.

    Article  CAS  Google Scholar 

  26. Hill MW. Influence of age on the morphology and transit time of murine stratified squamous epithelia. Arch Oral Biol. 1988;33:221–9.

    Article  CAS  PubMed  Google Scholar 

  27. Hornstein OP, Schell H. Comparative study on the 3H-thymidine index of dorsal epidermis, buccal mucosa, and seminal vesicles in senile male rats. Arch Dermatol Res. 1975;254:37–41.

    Article  CAS  PubMed  Google Scholar 

  28. Abu Eid R, Sawair F, Landini G, Saku T. Age and the architecture of oral mucosa. Age (Dordr). 2012;34:651–8.

    Article  CAS  Google Scholar 

  29. Carpenter GH. The secretion, components, and properties of saliva. Annu Rev Food Sci Technol. 2013;4:267–76.

    Article  CAS  PubMed  Google Scholar 

  30. Sonesson M, Ericson D, Kinnby B, Wickström C. Glycoprotein 340 and sialic acid in minor-gland and whole saliva of children, adolescents, and adults. Eur J Oral Sci. 2011;119:435–40.

    Article  CAS  PubMed  Google Scholar 

  31. Hidas A, Noy AF, Birman N, Shapira J, Matot I, Steinberg D, et al. Oral health status, salivary flow rate and salivary quality in children, adolescents and young adults with ADHD. Arch Oral Biol. 2011;56:1137–41.

    Article  PubMed  Google Scholar 

  32. Tenovuo J. Antimicrobial function of human saliva—how important is it for oral health? Acta Odontol Scand. 1998;56:250–6.

    Article  CAS  PubMed  Google Scholar 

  33. van der Waal I. Diseases of the salivary glands including dry mouth and Sjögren’s syndrome. Berlin: Springer Berlin Heidelberg; 1997.

    Book  Google Scholar 

  34. Sonesson M, Eliasson L, Matsson L. Minor salivary gland secretion in children and adults. Arch Oral Biol. 2003;48:535–9.

    Article  PubMed  Google Scholar 

  35. Khutoryanskiy VV. Advances in mucoadhesion and mucoadhesive polymers. Macromol Biosci. 2011;11:748–64.

    Article  CAS  PubMed  Google Scholar 

  36. Swamy P, Kinagi MB, Biradar SS, Gada SN, Shilpa H. Formulation design and evaluation of bilayer buccal tablets of granisetron hydrochloride. Indian J Pharm Educ Res. 2011;45:242–7.

    Google Scholar 

  37. Kianfar F, Chowdhry BZ, Antonijevic MD, Boateng JS. Novel films for drug delivery via the buccal mucosa using model soluble and insoluble drugs. Drug Dev Ind Pharm. 2012;38:1207–20.

    Article  CAS  PubMed  Google Scholar 

  38. Aframian DJTD. The distribution of oral mucosal pH values in healthy saliva secretors. Oral Dis. 2006;12:420–3.

    Article  CAS  PubMed  Google Scholar 

  39. Nordstrom A, Birkhed D. Effect of a third application of toothpastes (1450 and 5000 ppm F), including a “massage” method on fluoride retention and pH drop in plaque. Acta Odontol Scand. 2013;71:50–6.

    Article  PubMed  CAS  Google Scholar 

  40. Gittings S, Turnbull N, Henry B, Roberts CJ, Gershkovich P. Characterisation of human saliva as a platform for oral dissolution medium development. Eur J Pharm Biopharm. 2015;91:16–24.

    Article  CAS  PubMed  Google Scholar 

  41. Psoter WJ, Spielman AL, Gebrian B, Jean RS, Katz RV. Effect of childhood malnutrition on salivary flow and pH. Arch Oral Biol. 2008;53:231–7.

    Article  CAS  PubMed  Google Scholar 

  42. Brandtzaeg P. Synthesis and secretion of human salivary immunoglobulins. In: Garrett JR, Ekstram J, Anderson LC, editors. Frontiers of oral biology (vol. 10 + 11). Basel: KARGER; 1998. p. 167–99.

    Google Scholar 

  43. Madhav NVS, Shakya AK, Shakya P, Singh K. Orotransmucosal drug delivery systems: a review. J Control Release. 2009;140:2–11.

    Article  CAS  PubMed  Google Scholar 

  44. Loomis RE, Prakobphol A, Levine MJ, Reddy MS, Jones PC. Biochemical and biophysical comparison of two mucins from human submandibular-sublingual saliva. Arch Biochem Biophys. 1987;258:452–64.

    Article  CAS  PubMed  Google Scholar 

  45. Murray PA, Levine MJ, Reddy MS, Tabak LA, Bergey EJ. Preparation of a sialic acid-binding protein from Streptococcus mitis KS32AR. Infect Immun. 1986;53:359–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bartelink IH, Rademaker CMA, Schobben AFAM, van den Anker JN. Guidelines on paediatric dosing on the basis of developmental physiology and pharmacokinetic considerations. Clin Pharmacokinet. 2006;45:1077–97.

    Article  CAS  PubMed  Google Scholar 

  47. Crawford JD, Terry ME, Rourke GM. Simplification of drug dosage calculation by application of the surface area principle. Pediatrics. 1950;5:783–90.

    CAS  PubMed  Google Scholar 

  48. Rodman JH. Pharmacokinetic variability in the adolescent: implications of body size and organ function for dosage regimen design. J Adolesc Health. 1994;15:654–62.

    Article  CAS  PubMed  Google Scholar 

  49. Ali AA, Charoo NA, Abdallah DB. Pediatric drug development: formulation considerations. Drug Dev Ind Pharm. 2014;40:1283–99.

    Article  CAS  PubMed  Google Scholar 

  50. Raj M, Sundaram R, Paul M, Kumar K. Blood pressure distribution in Indian children. Indian Pediatr. 2010;47:477–85.

    Article  PubMed  Google Scholar 

  51. Rathbone MJ, Drummond BK, Tucker IG. The oral cavity as a site for systemic drug delivery. Adv Drug Deliv Rev. 1994;13:1–22.

    Article  CAS  Google Scholar 

  52. Şenel S, Hıncal AA. Drug permeation enhancement via buccal route: possibilities and limitations. J Control Release. 2001;72:133–44.

    Article  PubMed  Google Scholar 

  53. Banga AK, Chien YW. Systemic delivery of therapeutic peptides and proteins. Int J Pharm. 1988;48:15–50.

    Article  CAS  Google Scholar 

  54. Liu F, Ranmal S, Batchelor HK, Orlu-Gul M, Ernest TB, Thomas IW, et al. Patient-centred pharmaceutical design to improve acceptability of medicines: similarities and differences in paediatric and geriatric populations. Drugs. 2014;74:1871–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nunn T, Williams J. Formulation of medicines for children. Br J Clin Pharmacol. 2005;59:674–6.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Khan S, Boateng JS, Mitchell J, Trivedi V. Formulation, characterisation and stabilisation of buccal films for paediatric drug delivery of omeprazole. AAPS PharmSciTech. 2015;16:800–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lajoinie A, Henin E, Kassai B. Oral formulation of choice for children. Arch Pediatr. 2015;22:877–85.

    Article  CAS  PubMed  Google Scholar 

  58. Scott RC, Besag FMC, Neville BGR. Buccal midazolam and rectal diazepam for treatment of prolonged seizures in childhood and adolescence: a randomised trial. Lancet. 1999;353:623–6.

    Article  CAS  PubMed  Google Scholar 

  59. Khan A, Baheerathan A, Setty G, Hussain N. Carers’ express positive views on the acceptability, efficacy and safety of buccal midazolam for paediatric status epilepticus. Acta Paediatr. 2014;103:e165–168.

    Article  CAS  PubMed  Google Scholar 

  60. Sudhakar Y, Kuotsu K, Bandyopadhyay AK. Buccal bioadhesive drug delivery—a promising option for orally less efficient drugs. J Control Release. 2006;114:15–40.

    Article  CAS  PubMed  Google Scholar 

  61. Jaipal A, Pandey MM, Charde SY, Sadhu N, Srinivas A, Prasad RG. Controlled release effervescent buccal discs of buspirone hydrochloride: in vitro and in vivo evaluation studies. Drug Deliv. 2016;23:452–8.

    Article  CAS  PubMed  Google Scholar 

  62. Twycross R, Prommer EE, Mihalyo M, Wilcock A. Fentanyl (transmucosal). J Pain Symptom Manag. 2012;44:131–49.

    Article  CAS  Google Scholar 

  63. Peh KK, Wong CF. Polymeric films as vehicle for buccal delivery: swelling, mechanical, and bioadhesive properties. J Pharm Pharm Sci. 1999;2:53–61.

    CAS  PubMed  Google Scholar 

  64. Cui ZR, Mumper RJ. Bilayer films for mucosal (genetic) immunization via the buccal route in rabbits. Pharm Res. 2002;19:947–53.

    Article  CAS  PubMed  Google Scholar 

  65. Walsh J, Cram A, Woertz K, Breitkreutz J, Winzenburg G, Turner R, et al. Playing hide and seek with poorly tasting paediatric medicines: do not forget the excipients. Adv Drug Deliv Rev. 2014;73:14–33.

    Article  CAS  PubMed  Google Scholar 

  66. Nappinnai M, Chandanbala R, Balaijirajan R. Formulation and evaluation of nitrendipine buccal films. Indian J Pharm Sci. 2008;70:631–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Takeuchi H, Thongborisute J, Matsui Y, Sugihara H, Yamamoto H, Kawashima Y. Novel mucoadhesion tests for polymers and polymer-coated particles to design optimal mucoadhesive drug delivery systems. Adv Drug Deliv Rev. 2005;57:1583–94.

    Article  CAS  PubMed  Google Scholar 

  68. Nagai T, Konishi R. Buccal/gingival drug delivery systems. J Control Release. 1987;6:353–60.

    Article  CAS  Google Scholar 

  69. Shojaei AH, Li X. Mechanisms of buccal mucoadhesion of novel copolymers of acrylic acid and polyethylene glycol monomethylether monomethacrylate. J Control Release. 1997;47:151–61.

    Article  CAS  Google Scholar 

  70. Lele BS, Hoffman AS. Mucoadhesive drug carriers based on complexes of poly(acrylic acid) and PEGylated drugs having hydrolysable PEG-anhydride-drug linkages. J Control Release. 2000;69:237–48.

    Article  CAS  PubMed  Google Scholar 

  71. Hanif M, Zaman M, Chaurasiya V. Polymers used in buccal film: a review. Des Monomers Polym. 2015;18:105–11.

    Article  CAS  Google Scholar 

  72. Schipper NG, Olsson S, Hoogstraate JA, deBoer AG, Vårum KM, Artursson P. Chitosans as absorption enhancers for poorly absorbable drugs 2: mechanism of absorption enhancement. Pharm Res. 1997;14:923–9.

    Article  CAS  PubMed  Google Scholar 

  73. Sandri GSR, Bonferoni MC, Ferrari F, Mori M, Caramella C. The role of chitosan as a mucoadhesive agent in mucosal drug delivery. J Drug Deliv Sci Technol. 2012;22:275–84.

    Article  CAS  Google Scholar 

  74. Nafee NA, Ismail FA, Boraie NA, Mortada LM. Mucoadhesive buccal patches of miconazole nitrate: in vitro/in vivo performance and effect of ageing. Int J Pharm. 2003;264:1–14.

    Article  CAS  PubMed  Google Scholar 

  75. Sinha Roy D, Rohera BD. Comparative evaluation of rate of hydration and matrix erosion of HEC and HPC and study of drug release from their matrices. Eur J Pharm Sci. 2002;16:193–9.

    Article  CAS  PubMed  Google Scholar 

  76. Charde S, Mudgal M, Kumar L, Saha R. Development and evaluation of buccoadhesive controlled release tablets of lercanidipine. AAPS PharmSciTech. 2008;9:182–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Prajapati V, Bansal M, Sharma PK. Mucoadhesive buccal patches and use of natural polymer in its preparation—a review. Int J PharmTech Res. 2012:4.

  78. Singh M, Tiwary AK, Kaur G. Investigations on interpolymer complexes of cationic guar gum and xanthan gum for formulation of bioadhesive films. Res Pharm Sci. 2010;5:79–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Alanazi FK, Abdel Rahman AA, Mahrous GM, Alsarra IA. Formulation and physicochemical characterisation of buccoadhesive films containing ketorolac. J Drug Deliv Sci Technol. 2007;17:183–92.

    Article  CAS  Google Scholar 

  80. Prodduturi S, Manek RV, Kolling WM, Stodghill SP, Repka MA. Solid-state stability and characterization of hot-melt extruded poly(ethylene oxide) films. J Pharm Sci. 2005;94:2232–45.

    Article  CAS  PubMed  Google Scholar 

  81. Bukka R, Dwivedi M, Nargund LVG, Prasam K. Formulation and evaluation of felodipine buccal films containing polyethylene oxide. Int J Res Pharmaceut Biomed Sci. 2012;3:1153–8.

    CAS  Google Scholar 

  82. Miro A, d’Angelo I, Nappi A, et al. Engineering poly(ethylene oxide) buccal films with cyclodextrin: a novel role for an old excipient? Int J Pharm. 2013;452:283–91.

    Article  CAS  PubMed  Google Scholar 

  83. Panigrahi L, Pattnaik S, Ghosal SK. Design and characterization of mucoadhesive buccal patches of salbutamol sulphate. Acta Pol Pharm. 2004;61:351–60.

    CAS  PubMed  Google Scholar 

  84. Abruzzo A, Bigucci F, Cerchiara T, Cruciani F, Vitali B, Luppi B. Mucoadhesive chitosan/gelatin films for buccal delivery of propranolol hydrochloride. Carbohydr Polym. 2012;87:581–8.

    Article  CAS  Google Scholar 

  85. Colonna C, Genta I, Perugini P, Pavanetto F, Modena T, Valli M, et al. 5-Methyl-pyrrolidinone chitosan films as carriers for buccal administration of proteins. AAPS PharmSciTech. 2006;7:70.

    Article  PubMed  Google Scholar 

  86. Dhawan N, Kumar K, Kalia AN, Arora S. N-Succinyl chitosan as buccal penetration enhancer for delivery of herbal agents in treatment of oral mucositis. Curr Drug Deliv. 2014;11:415–25.

    Article  CAS  PubMed  Google Scholar 

  87. Giovino C, Ayensu I, Tetteh J, Boateng JS. Development and characterisation of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): a potential approach for buccal delivery of macromolecules. Int J Pharm. 2012;428:143–51.

    Article  CAS  PubMed  Google Scholar 

  88. Mazzarino L, Borsali R, Lemos-Senna E. Mucoadhesive films containing chitosan-coated nanoparticles: a new strategy for buccal curcumin release. J Pharm Sci. 2014;103:3764–71.

    Article  CAS  PubMed  Google Scholar 

  89. Miranda Costa I dos S, Abranches RP, Junqueira Garcia MT, Riemma Pierre MB. Chitosan-based mucoadhesive films containing 5-aminolevulinic acid for buccal cancer’s treatment. J Photochem Photobiol B-Biol. 2014;140:266–75.

    Article  CAS  Google Scholar 

  90. Mortazavian E, Dorkoosh FA, Rafiee-Tehrani M. Design, characterization and ex vivo evaluation of chitosan film integrating of insulin nanoparticles composed of thiolated chitosan derivative for buccal delivery of insulin. Drug Dev Ind Pharm. 2014;40:691–8.

    Article  CAS  PubMed  Google Scholar 

  91. Park D-M, Song Y-K, Jee J-P, Kim HT, Kim C-K. Development of chitosan-based ondansetron buccal delivery system for the treatment of emesis. Drug Dev Ind Pharm. 2012;38:1077–83.

    Article  CAS  PubMed  Google Scholar 

  92. Bernkop-Schnürch A. Thiomers: a new generation of mucoadhesive polymers. Adv Drug Deliv Rev. 2005;57:1569–82.

    Article  PubMed  CAS  Google Scholar 

  93. Leitner VM, Walker GF, Bernkop-Schnürch A. Thiolated polymers: evidence for the formation of disulphide bonds with mucus glycoproteins. Eur J Pharm Biopharm. 2003;56:207–14.

    Article  CAS  PubMed  Google Scholar 

  94. Gandhi R, Robinson J. Mechanisms of penetration enhancement for transbuccal delivery of salicylic acid. Int J Pharm. 1992;85:129–40.

    Article  CAS  Google Scholar 

  95. Caon T, Jin L, Simões CMO, Norton RS, Nicolazzo JA. Enhancing the buccal mucosal delivery of peptide and protein therapeutics. Pharm Res. 2015;32:1–21.

    Article  CAS  PubMed  Google Scholar 

  96. Deneer VHM, Drese GB, Roemelé PEH, Verhoef JC, Lie-A-Huen L, Kingma JH, et al. Buccal transport of flecainide and sotalol: effect of a bile salt and ionization state. Int J Pharm. 2002;241:127–34.

    Article  CAS  PubMed  Google Scholar 

  97. Nicolazzo JA, Reed BL, Finnin BC. Assessment of the effects of sodium dodecyl sulfate on the buccal permeability of caffeine and estradiol. J Pharm Sci. 2004;93:431–40.

    Article  CAS  PubMed  Google Scholar 

  98. Hoogstraate AJ, Senel S, Cullander C, Verhoef J, Junginger HE, Boddé HE. Effects of bile salts on transport rates and routes of FITC-labelled compounds across porcine buccal epithelium in vitro. J Control Release. 1996;40:211–21.

    Article  CAS  Google Scholar 

  99. Golden GM, McKie JE, Potts RO. Role of stratum corneum lipid fluidity in transdermal drug flux. J Pharm Sci. 1987;76:25–8.

    Article  CAS  PubMed  Google Scholar 

  100. Turunen TM, Urtti A, Paronen P, Audus KL, Rytting JH. Effect of some penetration enhancers on epithelial membrane lipid domains: evidence from fluorescence spectroscopy studies. Pharm Res. 1994;11:288–94.

    Article  CAS  PubMed  Google Scholar 

  101. Harris D, Robinson JR. Drug delivery via the mucous membranes of the oral cavity. J Pharm Sci. 1992;81:1–10.

    Article  CAS  PubMed  Google Scholar 

  102. Şenel S, Kremer MJ, Kaş S, Wertz PW, Hıncal AA, Squier CA. Enhancing effect of chitosan on peptide drug delivery across buccal mucosa. Biomaterials. 2000;21:2067–71.

    Article  PubMed  Google Scholar 

  103. Cid YP, Pedrazzi V, de Sousa VP, Riemma Pierre MB. In vitro characterization of chitosan gels for buccal delivery of Celecoxib: influence of a penetration enhancer. AAPS PharmSciTech. 2012;13:101–11.

    Article  CAS  PubMed  Google Scholar 

  104. Matsuda H, Arima H. Cyclodextrins in transdermal and rectal delivery. Adv Drug Deliv Rev. 1999;36:81–99.

    Article  CAS  PubMed  Google Scholar 

  105. Higuchi T. Physical chemical analysis of percutaneous absorption process from creams and ointments. J Soc Cosmet Chem. 1960;11:85–97.

    Google Scholar 

  106. Martins PS, Ochoa R, Pimenta AMC, Ferreira LAM, Melo AL, da Silva JBB, et al. Mode of action of beta-cyclodextrin as an absorption enhancer of the water-soluble drug meglumine antimoniate. Int J Pharm. 2006;325:39–47.

    Article  CAS  PubMed  Google Scholar 

  107. Figueiras A, Pais AACC, Veiga FJB. A comprehensive development strategy in buccal drug delivery. AAPS PharmSciTech. 2010;11:1703–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hovgaard L. Drug-delivery studies in Caco-2 monolayers. 4. Absorption enhancer effects of cyclodextrins. Pharm Res. 1995;12:1328–32.

    Article  CAS  PubMed  Google Scholar 

  109. Davies EH, Tuleu C. Medicines for children: a matter of taste. J Pediatr. 2008;153(599–604):604–2.

    Google Scholar 

  110. Thompson C, Lombardi D, Sjostedt P, Squires L. Best practice recommendations regarding the assessment of palatability and swallowability in the development of oral dosage forms for pediatric patients. Ther Innov Regul Sci. 2015;49:647–58.

    Article  Google Scholar 

  111. Neves BG, Farah A, Lucas E, de Sousa VP, Maia LC. Are paediatric medicines risk factors for dental caries and dental erosion? Community Dent Health. 2010;27:46–51.

    CAS  PubMed  Google Scholar 

  112. Neves BG, da Pierro VSS, Maia LC. Pediatricians’ perceptions of the use of sweetened medications related to oral health. J Clin Pediatr Dent. 2008;32:133–7.

    Article  PubMed  Google Scholar 

  113. Fabiano V, Mameli C, Zuccotti GV. Paediatric pharmacology: remember the excipients. Pharmacol Res. 2011;63:362–5.

    Article  CAS  PubMed  Google Scholar 

  114. Arulanantham K, Genel M. Central nervous system toxicity associated with ingestion of propylene glycol. J Pediatr. 1978;93:515–6.

    Article  CAS  PubMed  Google Scholar 

  115. MacDonald MG, Getson PR, Glasgow AM, Miller MK, Boeckx RL, Johnson EL. Propylene glycol: increased incidence of seizures in low birth weight infants. Pediatrics. 1987;79:622–5.

    CAS  PubMed  Google Scholar 

  116. Gershanik J, Boecler B, Ensley H, McCloskey S, George W. The gasping syndrome and benzyl alcohol poisoning. N Engl J Med. 1982;307:1384–8.

    Article  CAS  PubMed  Google Scholar 

  117. Lopezherce J, Bonet C, Meana A, Albajara L. Benzyl alcohol poisoning following diazepam intravenous-infusion. Ann Pharmacother. 1995;29:632.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

All authors thank the support from the STINT IB2015-6087 project. Additionally, support is acknowledged from FONDECYT 11130235 and FONDAP 15130011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier O. Morales.

Additional information

Guest Editors: Maren Preis and Jörg Breitkreutz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montero-Padilla, S., Velaga, S. & Morales, J.O. Buccal Dosage Forms: General Considerations for Pediatric Patients. AAPS PharmSciTech 18, 273–282 (2017). https://doi.org/10.1208/s12249-016-0567-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0567-2

KEY WORDS

Navigation