Skip to main content
Log in

Proniosomal Oral Tablets for Controlled Delivery and Enhanced Pharmacokinetic Properties of Acemetacin

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Free-flowing proniosomal powders of acemetacin (AC) were prepared using the slurry method and maltodextrin as carrier. Positively charged proniosomes composed of 70:20:10 of Span 60/cholesterol (Chol)/stearylamine (SA), respectively, were successively compressed into tablets using direct compression method. The tablets were characterized for weight variability, friability, hardness, drug content uniformity, and dissolution properties. The in vivo evaluation of the prepared proniosomes (powder or tablet forms) after oral administration was investigated by the determination of AC and its active metabolite indomethacin (IND) in the blood of albino rabbits. Results indicated that the increase of Chol from 10% to 20% markedly reduced the efflux of the drug. Further Chol addition from 30% to 50% led to increased AC release rates. The proniosome tablets of AC showed greater hardness and disintegration time and less friability than AC plain tablets. The dissolution of proniosomal tablets indicated a lower drug release percentage compared to powdered proniosomes and AC plain tablets. The mean pharmacokinetic parameters of AC and IND from different formulations indicated increased t 1/2 and area under the curve (AUC) of both AC and IND for proniosomal tablets compared with both proniosomal powders and AC plain tablets. This study suggested the formulation of AC proniosomal powder into tablets to control and extend its pharmacologic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Storm G, Crommelin DJA. Liposomes: quo vadis? PSTT. 1998;1(1):19–31.

    CAS  Google Scholar 

  2. Dua JS, Rana AC, Bhandari AK. Liposomes: methods of preparation and application. Int J Pharm Sci Res. 2012;3(2):14–20.

    Google Scholar 

  3. Ulrich AS. Biophysical aspects of using liposomes as delivery vehicles. Biosci Rep. 2002;22(2):129–50.

    Article  CAS  PubMed  Google Scholar 

  4. Smola M, Vandamme T, Sokolowski A. Nanocarriers as pulmonary drug delivery systems to treat and to diagnose respiratory and non-respiratory diseases. Int J Nanomedicine. 2008;3(1):1–19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Kumar D, Sharma D, Singh G, Singh M, Rathore MS. Lipoidal soft hybrid biocarriers of supramolecular construction for drug delivery. ISRN Pharm. 2012;2012:1–14.

    Article  Google Scholar 

  6. Hu C, Rhodes DG. Proniosomes: a novel drug carrier preparation. Int J Pharm. 1999;185:23–35.

    Article  CAS  PubMed  Google Scholar 

  7. Blazek-Welsh AI, Rhodes DG. SEM imaging predicts quality of niosomes from maltodextrin-based proniosomes. Pharm Res. 2001;18:656–61.

    Article  CAS  PubMed  Google Scholar 

  8. Solanki A, Parikh J, Parikh R. Preparation, characterization, optimization, and stability studies of aceclofenac proniosomes. Int J Pharm Res. 2008;7(4):237–46.

    CAS  Google Scholar 

  9. Raja K, Jestin PU, Athul PV, Tamizharasi S, Sivakumar T. Formulation and evaluation of maltodextrin based proniosomal drug delivery system containing anti-diabetic (Glipizide) drug. Int J Pharm Tech Res. 2011;3(1):471–7.

    CAS  Google Scholar 

  10. Carter SJ. In: Copper J, Gunn S, editors. Tutorial pharmacy. 6th ed. New Delhi: CBS Publishers and Distributors; 1986. p. 211–33.

    Google Scholar 

  11. Basak SC, Kumar KS, Ramalingam M. Design and release characteristics of sustained release tablet containing metformin HCL. Braz J Pharm Sci. 2008;44:477–83.

    CAS  Google Scholar 

  12. Marwa HA, Omaima AS, Hanaa AE, Hanan ME. Optimizing proniosomes for controlled release of ketoprofen using Box-Behnken experimental design. Int J Pharm Sci Res. 2011;2(8):2195–205.

    Google Scholar 

  13. Mokhtar M, Sammour OA, Hammad MA, Megrab NA. Effect of some formulation parameters on flurbiprofen encapsulation and release rates of niosomes prepared from proniosomes. Int J Pharm. 2008;361:104–11.

    Article  CAS  PubMed  Google Scholar 

  14. Goud BA, Raju G, Rambhau D. Formulation and evaluation of megestrol proniosomal systems. IJPBS. 2012;2(2):67–76.

    Google Scholar 

  15. Velmurugan S, Deepa RD, Nagarjuna RG. Formulation and evaluation of etoricoxib orodispersible tablets. Int J Pharm Tech Res. 2013;5(2):475–85.

    CAS  Google Scholar 

  16. Pawar PS, Saleem MA. Formulation and evaluation of oral colon targeted tablet of budesonide. Pharm Lett. 2013;5(3):1–12.

    CAS  Google Scholar 

  17. Chávez-Piña AE, Favari L, Castañeda-Hernández G. Pharmacokinetics of acemetacin and its active metabolite indomethacin in rats during acute hepatic damage and liver regeneration. Ann Hepatol. 2009;8(2):141–7.

    PubMed  Google Scholar 

  18. Parthibarajan R, Rubinareichal R, Loganathan S. Formulation and evaluation of methotrexate proniosomal powder. Int J Pharm Pharm Sci. 2012;4(11):175–8.

    CAS  Google Scholar 

  19. Sankar V, Ruckmani K, Durga S, Jailani S. Proniosomes as drug carriers. Pak J Pharm Sci. 2010;23(1):103–7.

    CAS  PubMed  Google Scholar 

  20. Mokhtar MI, Salma AT, Mahdi M. Liposomal diltiazem HCl as ocular drug delivery system for glaucoma. Drug Dev Ind Pharm. 2013. doi:10.3109/03639045.2013.783589.

    Google Scholar 

  21. Marwa HA, Omaima AS, Hanaa AE, Mohammed EA. Design and development of piroxicam-entrapped niosomes as an oral drug delivery system. Int J Adv Pharm Res. 2013;4(6):1873–86.

    Google Scholar 

  22. El-Ridy MS, Badawi AA, Safar MM, Mohsen AM. Niosomes as a novel pharmaceutical formulation encapsulating the hepatoprotective drug silymarin. Int J Pharm Pharm Sci. 2012;4(1):549–59.

    CAS  Google Scholar 

  23. Betageri GV. Liposomal encapsulation and stability of dideoxyinosine triphosphate. Drug Dev Ind Pharm. 1993;19:531–9.

    Article  CAS  Google Scholar 

  24. Sammour OA, Al-Zuhair HH, El-Sayed MI. Inhibitory effect of liposome-encapsulated piroxicam on inflammation and gastric mucosal damage. Pharm Ind. 1998;60(12):1084–7.

    CAS  Google Scholar 

  25. Omaima NE, Ahmed HH. Preparation and evaluation of acetazolamide liposomes as an ocular delivery system. Int J Pharm. 1997;158:121–5.

    Article  Google Scholar 

  26. Guinedi AS, Mortada ND, Mansour S, Hathout RM. Preparation and evaluation of reverse-phase evaporation and multilamellar niosomes as ophthalmic carriers of acetazolamide. Int J Pharm. 2005;306:71–82.

    Article  CAS  PubMed  Google Scholar 

  27. Abdallah M, Sammour O, EL-Ghamry H, Abu-Selem M. Preparation and in-vitro evaluation of diclofenac sodium niosomal formulations. Int J Pharm Sci Res. 2013;4(5):1757–65.

    CAS  Google Scholar 

  28. El-Samaligy MS, Afifi NN, Mahmoud EA. Increasing system: preparation and experimental design investigation. Int J Pharm. 2006;308:140–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Mokhtar Ibrahim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shehata, T.M., Abdallah, M.H. & Ibrahim, M.M. Proniosomal Oral Tablets for Controlled Delivery and Enhanced Pharmacokinetic Properties of Acemetacin. AAPS PharmSciTech 16, 375–383 (2015). https://doi.org/10.1208/s12249-014-0233-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0233-5

KEY WORDS

Navigation