Skip to main content

Advertisement

Log in

Formulation, Physicochemical Characterization, and In Vitro Study of Chitosan/HPMC Blends-Based Herbal Blended Patches

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The current work prepared chitosan/hydroxypropyl methylcellulose (HPMC) blends and studied the possibility of chitosan/HPMC blended patches for Zingiber cassumunar Roxb. The blended patches without/with crude Z. cassumunar oil were prepared by homogeneously mixing the 3.5% w/v of chitosan solution and 20% w/v of HPMC solution, and glycerine was used as plasticizer. Then, they were poured into Petri dish and produced the blended patches in hot air oven at 70 ± 2°C. The blended patches were tested and evaluated by the physicochemical properties: moisture uptake, swelling ratio, erosion, porosity, Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction, and photographed the surface and cross-section morphology under SEM technique. Herbal blended patches were studied by the in vitro release and skin permeation of active compound D. The blended patches could absorb the moisture and became hydrated patches that occurred during the swelling of blended patches. They were eroded and increased by the number of porous channels to pass through out for active compound D. In addition, the blended patches indicated the compatibility of the blended ingredients and homogeneous smooth and compact. The blended patches made from chitosan/HPMC blends provide a controlled release and skin permeation behavior of compound D. Thus, the blended patches could be suitably used for herbal medicine application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Mazzitelli S, Pagano C, Giusepponi D, Nastruzzi C, Perioli L. Hydrogel blends with adjustable properties as patches for transdermal delivery. Int J Pharm. 2013;454(1):47–57. doi:10.1016/j.ijpharm.2013.06.081.

    Article  CAS  PubMed  Google Scholar 

  2. Pichayakorn W, Suksaeree J, Boonme P, Amnuaikit T, Taweepreda W, Ritthidej GC. Deproteinized natural rubber latex/hydroxypropylmethyl cellulose blending polymers for nicotine matrix films. Ind Eng Chem Res. 2012;51(25):8442–52. doi:10.1021/ie300608j.

    Article  CAS  Google Scholar 

  3. Pichayakorn W, Suksaeree J, Boonme P, Amnuaikit T, Taweepreda W, Ritthidej GC. Nicotine transdermal patches using polymeric natural rubber as the matrix controlling system: effect of polymer and plasticizer blends. J Membr Sci. 2012;411–412:81–90. doi:10.1016/j.memsci.2012.04.017.

    Article  Google Scholar 

  4. Pichayakorn W, Suksaeree J, Boonme P, Amnuaikit T, Taweepreda W, Ritthidej GC. Deproteinized natural rubber as membrane controlling layer in reservoir type nicotine transdermal patches. Chem Eng Res Des. 2012;91(3):520–9. doi:10.1016/j.cherd.2012.09.011.

    Article  Google Scholar 

  5. Suksaeree J, Charoenchai L, Monton C, Chusut T, Sakunpak A, Pichayakorn W, et al. Preparation of a pseudolatex-membrane for ketoprofen transdermal drug delivery systems. Ind Eng Chem Res. 2013;52(45):15847–54. doi:10.1021/ie402345a.

    Article  CAS  Google Scholar 

  6. Suksaeree J, Monton C, Sakunpak A, Charoonratana T. Formulation and in vitro study of ketoprofen pseudolatex gel for transdermal drug delivery systems. Int J Pharm Pharm Sci. 2014;6(2):248–53.

    Google Scholar 

  7. Babu VR, Sairam M, Hosamani KM, Aminabhavi TM. Preparation of sodium alginate-methylcellulose blend microspheres for controlled release of nifedipine. Carbohydr Polym. 2007;69(2):241–50. doi:10.1016/j.carbpol.2006.09.027.

    Article  Google Scholar 

  8. Vijayan V, Reddy KR, Sakthivel S, Swetha C. Optimization and charaterization of repaglinide biodegradable polymeric nanoparticle loaded transdermal patchs: in vitro and in vivo studies. Colloids Surf B: Biointerfaces. 2013;111:150–5. doi:10.1016/j.colsurfb.2013.05.020.

    Article  CAS  PubMed  Google Scholar 

  9. Lao LL, Venkatraman SS, Peppas NA. Modeling of drug release from biodegradable polymer blends. Eur J Pharm Biopharm. 2008;70(3):796–803. doi:10.1016/j.ejpb.2008.05.024.

    Article  CAS  PubMed  Google Scholar 

  10. Abedalwafa M, Wang F, Wang L, Li C. Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: a review. Rev Adv Mater Sci. 2013;34(2):123–40.

    CAS  Google Scholar 

  11. Llorens E, Armelin E, del Mar Pérez-Madrigal M, del Valle LJ, Alemán C, Puiggalí J. Nanomembranes and nanofibers from biodegradable conducting polymers. Polymers. 2013;5(3):1115–57. doi:10.3390/polym5031115.

    Article  Google Scholar 

  12. Roether JA, Rai R, Wolf R, Tallawi M, Boccaccini AR. Biodegradable poly(glycerol sebacate)/poly(3-hydroxybutyrate)-TiO2 nanocomposites: fabrication and characterisation. Mater Sci Technol. 2014;30(5):574–81. doi:10.1179/1743284713Y.0000000499.

    Article  CAS  Google Scholar 

  13. Engineer C, Parikh J, Raval A. Review on hydrolytic degradation behavior of biodegradable polymers from controlled drug delivery dystem. Trends Biomater Artif Organs. 2011;25(2):79–85.

    Google Scholar 

  14. Leja K, Lewandowicz G. Polymer biodegradation and biodegradable polymers—a review. Pol J Environ Stud. 2010;19(2):255–66.

    Google Scholar 

  15. Mohanty AK, Misra M, Hinrichsen G. Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng. 2000;276–277(1):1–24. doi:10.1002/(sici)1439-2054(20000301)276:1<1::aid-mame1>3.0.co;2-w.

    Article  Google Scholar 

  16. Agnihotri SA, Aminabhavi TM. Controlled release of clozapine through chitosan microparticles prepared by a novel method. J Control Release. 2004;96(2):245–59. doi:10.1016/j.jconrel.2004.01.025.

    Article  CAS  PubMed  Google Scholar 

  17. Ge Y-b, Chen D-w, Xie L-p, Zhang R-q. Optimized preparation of daidzein-loaded chitosan microspheres and in vivo evaluation after intramuscular injection in rats. Int J Pharm. 2007;338(1–2):142–51. doi:10.1016/j.ijpharm.2007.01.046.

    Article  CAS  PubMed  Google Scholar 

  18. Papadimitriou S, Bikiaris D, Avgoustakis K, Karavas E, Georgarakis M. Chitosan nanoparticles loaded with dorzolamide and pramipexole. Carbohydr Polym. 2008;73(1):44–54. doi:10.1016/j.carbpol.2007.11.007.

    Article  CAS  Google Scholar 

  19. Aranaz I, Mengibar M, Harris R, Panos I, Miralles B, Acosta N, et al. Functional characterization of chitin and chitosan. Curr Chem Biol. 2009;3(2):203–30. doi:10.2174/187231309788166415.

    CAS  Google Scholar 

  20. Santiago de Alvarenga E. Characterization and properties of chitosan. In: Elnashar M, editor. Biotechnology of biopolymers. Croatia: InTech; 2011. p. 91–108.

  21. Chen Y, Zhang Y, Feng X. An improved approach for determining permeability and diffusivity relevant to controlled release. Chem Eng Sci. 2010;65(22):5921–8. doi:10.1016/j.ces.2010.08.028.

    Article  CAS  Google Scholar 

  22. Khalil SKH, El-Feky GS, El-Banna ST, Khalil WA. Preparation and evaluation of warfarin-β-cyclodextrin loaded chitosan nanoparticles for transdermal delivery. Carbohydr Polym. 2012;90(3):1244–53. doi:10.1016/j.carbpol.2012.06.056.

    Article  CAS  PubMed  Google Scholar 

  23. Michalak I, Mucha M. The release of active substances from selected carbohydrate biopolymer membranes. Carbohydr Polym. 2012;87(4):2432–8. doi:10.1016/j.carbpol.2011.11.013.

    Article  CAS  Google Scholar 

  24. Kofuji K, Ito T, Murata Y, Kawashima S. The controlled release of a drug from biodegradable chitosan gel beads. Chem Pharm Bull (Tokyo). 2000;48(4):579–81.

    Article  CAS  Google Scholar 

  25. Hye Kim J, Il Kim S, Kwon I-B, Hyun Kim M, Ik LJ. Simple fabrication of silver hybridized porous chitosan-based patch for transdermal drug-delivery system. Mater Lett. 2013;95:48–51. doi:10.1016/j.matlet.2012.12.078.

    Article  Google Scholar 

  26. Rathva SR, Patel NN, Shah V, Upadhyay UM. Herbal transdermal patches: a review. Int J Drug Dis Herb Res. 2012;2(2):397–402.

    Google Scholar 

  27. Tangyuenyongwatana P, Kowapradit J, Opanasopit P, Gritsanapan W. Cellular transport of anti-inflammatory pro-drugs originated from a herbal formulation of Zingiber cassumunar and Nigella sativa. Chin Med. 2009;4(1):19.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Walters KA. Topical and transdermal therapeutic systems. In: Walters KA, editor. Dermatological and transdermal formulations (drugs and the pharmaceutical sciences). New York: Informa Healthcare; 2002. p. 1–112.

    Chapter  Google Scholar 

  29. Pongprayoon U, Soontornsaratune P, Jarikasem S, Sematong T, Wasuwat S, Claeson P. Topical antiinflammatory activity of the major lipophilic constituents of the rhizome of Zingiber cassumunar. Part I: the essential oil. Phytomedicine. 1997;3(4):319–22. doi:10.1016/S0944-7113(97)80003-7.

    Article  CAS  PubMed  Google Scholar 

  30. Pongprayoon U, Tuchinda P, Claeson P, Sematong T, Reutrakul V, Soontornsaratune P. Topical antiinflammatory activity of the major lipophilic constituents of the rhizome of Zingiber cassumunar. Part II: hexane extractives. Phytomedicine. 1997;3(4):323–6. doi:10.1016/S0944-7113(97)80004-9.

    Article  CAS  PubMed  Google Scholar 

  31. Kanjanapothi D, Soparat P, Panthong A, Tuntiwachwuttikul P, Reutrakul V. A uterine relaxant compound from Zingiber cassumunar. Planta Med. 1987;53:329–32.

    Article  CAS  PubMed  Google Scholar 

  32. Panthong A, Kanjanapothi D, Niwatananant W, Tuntiwachwuttikul P, Reutrakul V. Anti-inflammatory activity of compound D {(E)-4-(3′,4′-dimethoxyphenyl)but-3-en-2-ol} isolated from Zingiber cassumunar Roxb. Phytomedicine. 1997;4(3):207–12. doi:10.1016/S0944-7113(97)80069-4.

    Article  CAS  PubMed  Google Scholar 

  33. Rajesh N, Siddaramaiah H, Gowda DV, Somashekar CN. Formulation and evaluation of biopolymer based transdermal drug delivery. Int J Pharm Pharm Sci. 2010;2 Suppl 2:142–7.

    CAS  Google Scholar 

  34. Chen Z, Deng M, Chen Y, He G, Wu M, Wang J. Preparation and performance of cellulose acetate/polyethyleneimine blend microfiltration membranes and their applications. J Membr Sci. 2004;235(1–2):73–86. doi:10.1016/j.memsci.2004.01.024.

    Article  CAS  Google Scholar 

  35. Suksaeree J, Boonme P, Taweepreda W, Ritthidej GC, Pichayakorn W. Relationships between hydraulic permeability and porosity of natural rubber blended films. Isan J Pharm Sci. 2012;8(1):89–95.

    Google Scholar 

  36. Suksaeree J, Madaka F, Monton C, Sakunpak A, Chusut T, Charoonratana T. Method validation of (E)-4-(3′,4′-dimethoxyphenyl)-but-3-en-1-ol in Zingiber cassumunar Roxb. with different extraction techniques. Int J Pharm Pharm Sci. 2014;6(3):295–8.

    CAS  Google Scholar 

  37. Suksaeree J, Charoenchai L, Pichayakorn W, Boonme P. HPLC method development and validation of (E)-4-(3,4-dimethoxyphenyl)-but-3-en-1-ol in Zingiber cassumunar Roxb. from Thai Herbal Compress ball. Int J Pharm Pharm Sci Res. 2013;3(3):115–7.

    Google Scholar 

  38. Limpongsa E, Umprayn K. Preparation and evaluation of diltiazem hydrochloride diffusion-controlled transdermal delivery system. AAPS PharmSciTech. 2008;9(2):464–70. doi:10.1208/s12249-008-9062-8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Han A-R, Kim M-S, Jeong YH, Lee SK, Seo E-K. Cyclooxygenase-2 inhibitory phenylbutenoids from the rhizomes of Zingiber cassumunar. Chem Pharm Bull. 2005;53(11):1466–8.

    Article  CAS  PubMed  Google Scholar 

  40. Kaewchoothong A, Tewtrakul S, Panichayupakaranant P. Inhibitory effect of phenylbutanoid-richZingiber cassumunar extracts on nitric oxide production by murine macrophage-like RAW264.7 cells. Phytother Res. 2012;26(12):1789–92.

    Article  CAS  PubMed  Google Scholar 

  41. Masuda T, Jitoe A. Phenylbutenoid monomers from the rhizomes of Zingiber cassumunar. Phytochemistry. 1995;39(2):459–61. doi:10.1016/0031-9422(94)00883-U.

    Article  CAS  Google Scholar 

  42. Jeenapongsa R, Yoovathaworn K, Sriwatanakul KM, Pongprayoon U, Sriwatanakul K. Anti-inflammatory activity of (E)-1-(3,4-dimethoxyphenyl) butadiene from Zingiber cassumunar Roxb. J Ethnopharmacol. 2003;87(2–3):143–8. doi:10.1016/S0378-8741(03)00098-9.

    Article  CAS  PubMed  Google Scholar 

  43. Ozaki Y, Kawahara N, Harada M. Anti-inflammatory effect of Zingiber cassumunar Roxb. and its active principles. Chem. Pharm Bull (Tokyo). 1991;39(9):2353–9.

    Article  CAS  Google Scholar 

  44. Panthong A, Kanjanapothi D, Niwatananun V, Tuntiwachwuttikul P, Reutrakul V. Anti-inflammatory activity of compounds isolated from Zingiber cassumunar. Planta Med. 1990;56(6):655.

    Article  Google Scholar 

  45. Silva SMLB, Carla RC, Fook MVL, Raposo CMO, Carvalho LH, Canedo EL. Application of infrared spectroscopy to analysis of chitosan/clay nanocomposites. In: Theophanides T, editor. Infrared spectroscopy - materials science, engineering and technology. Croatia: InTech; 2012. p. 43–62.

    Google Scholar 

  46. Anuar NK, Wui WT, Ghodgaonkar DK, Taib MN. Characterization of hydroxypropylmethylcellulose films using microwave non-destructive testing technique. J Pharm Biomed Anal. 2007;43(2):549–57. doi:10.1016/j.jpba.2006.08.014.

    Article  CAS  PubMed  Google Scholar 

  47. Larsson M, Viridén A, Stading M, Larsson A. The influence of HPMC substitution pattern on solid-state properties. Carbohydr Polym. 2010;82(4):1074–81. doi:10.1016/j.carbpol.2010.06.030.

    Article  CAS  Google Scholar 

  48. Dhanikula A, Panchagnula R. Development and characterization of biodegradable chitosan films for local delivery of paclitaxel. AAPS J. 2004;6(3):88–99. doi:10.1208/aapsj060327.

    Article  PubMed Central  Google Scholar 

  49. Clark GL, Smith AF. X-ray diffraction studies of chitin, chitosan, and derivatives. J Phys Chem. 1935;40(7):863–79. doi:10.1021/j150376a001.

    Article  Google Scholar 

  50. Abdelaziz M, Ghannam MM. Influence of titanium chloride addition on the optical and dielectric properties of PVA films. Phys B. 2010;405(3):958–64. doi:10.1016/j.physb.2009.10.030.

    Article  CAS  Google Scholar 

  51. Moon TY, Cooper RH. Method of preventing surface cracking of portland cement mortar and concrete containing a film forming polymer modifier. US. 1979.

  52. Guo R, Du X, Zhang R, Deng L, Dong A, Zhang J. Bioadhesive film formed from a novel organic–inorganic hybrid gel for transdermal drug delivery system. Eur J Pharm Biopharm. 2011;79(3):574–83. doi:10.1016/j.ejpb.2011.06.006.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Faculty of Pharmacy and the Research Institute of Rangsit University for financial supports (Grant No. 74/2555).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jirapornchai Suksaeree.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suksaeree, J., Monton, C., Madaka, F. et al. Formulation, Physicochemical Characterization, and In Vitro Study of Chitosan/HPMC Blends-Based Herbal Blended Patches. AAPS PharmSciTech 16, 171–181 (2015). https://doi.org/10.1208/s12249-014-0216-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0216-6

KEY WORDS

Navigation