Skip to main content

Advertisement

Log in

Development and Characterization of siRNA Lipoplexes: Effect of Different Lipids, In Vitro Evaluation in Cancerous Cell Lines and In Vivo Toxicity Study

  • Research Article
  • Theme: Translational Application of Nano Delivery Systems: Emerging Cancer Therapy
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

ABSTRACT

Cationic liposomes have long been used as non-viral vectors for small interfering RNA (siRNA) delivery but are associated with high toxicity, less transfection efficiency, and in vivo instability. In this investigation, we have developed siRNA targeted to RRM1 that is responsible for development of resistance to gemcitabine in cancer cells. Effect of different lipid compositions has been evaluated on formation of stable and less toxic lipoplexes. Optimized cationic lipoplex (D2CH) system was comprised of dioleoyl-trimethylammoniumpropane (DOTAP), dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), hydrogenated soya phosphocholine (HSPC), cholesterol, and methoxy(polyethyleneglycol)2000–1,2-distearoyl-sn-glycero-3-phosphoethanolamine (mPEG2000–DSPE). D2CH lipoplexes have shown particle size (147.5 ± 2.89 nm) and zeta potential (12.26 ± 0.54 mV) characteristics essential for their in vivo use. In vitro cytotoxicity study has shown low toxicity of developed lipoplexes as compared with lipofectamine-2000 up to N/P ratio as high as 7.5. Cell uptake studies and gene expression studies have confirmed intracellular availability of siRNA. In addition, developed lipoplexes also showed ~3 times less hemolytic potential as compared with DOTAP/DOPE lipoplexes at lipid concentration of 5 mg/mL. Lipoplexes also maintained particle size less than 200 nm on exposure to high electrolyte concentration and showed >70% siRNA retention in presence of serum showing siRNA protection conferred by lipoplexes. Furthermore, in vivo acute toxicity studies in mice showed that formulation was non-toxic up to a dosage of 0.75 mg of siRNA/kg as lipoplexes and 300 mg lipid/kg as blank liposomes indicating tolerability of lipoplexes at a dose much higher than required for therapeutic use. Promising results of this study warrant further investigation of developed siRNA lipoplexes for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. Lung cancer incidence and mortality worldwide in 2008 GLOBACON 2008 (IARC), Section of Cancer Information. 2008.

  2. Horn L, Pao W, Johnson DH. Neoplasms of the lung. In: Longo D, Fauci A, Kasper D, Hauser S, Jameson J, Loscalzo J, editors. Harrison’s principles of internal medicine. 18th ed. United States: McGraw-Hill; 2011.

    Google Scholar 

  3. Thun MJ, Hannan LM, Adams-Campbell LL, Boffetta P, Buring JE, Feskanich D, et al. Lung cancer occurrence in never-smokers: an analysis of 13 cohorts and 22 cancer registry studies. PLoS Med. 2008;5(9):e185. doi:10.1371/journal.pmed.0050185.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Tsao AS. Tumors of the lungs. In: Porter RS, Kaplan JL, editors. The merck manual—fot the healthcare professionals. US: MERCK PUBLISHING GROUP; 2010.

    Google Scholar 

  5. Rha SY, Jeung HC, Choi YH, Yang WI, Yoo JH, Kim BS, et al. An association between RRM1 haplotype and gemcitabine-induced neutropenia in breast cancer patients. Oncologist. 2007;12(6):622–30. doi:10.1634/theoncologist.12-6-622.

    Article  CAS  PubMed  Google Scholar 

  6. Rosell R, Danenberg KD, Alberola V, Bepler G, Sanchez JJ, Camps C, et al. Ribonucleotide reductase messenger RNA expression and survival in gemcitabine/cisplatin-treated advanced non-small cell lung cancer patients. Clin Cancer Res Off J Am Assoc Cancer Res. 2004;10(4):1318–25.

    Article  CAS  Google Scholar 

  7. Khatri N, Rathi M, Baradia D, Trehan S, Misra A. In vivo delivery aspects of miRNA, shRNA and siRNA. Crit Rev Ther Drug Carrier Syst. 2012;29(6):487–527.

    Article  CAS  PubMed  Google Scholar 

  8. Mah C, Byrne BJ, Flotte TR. Virus-based gene delivery systems. Clin Pharmacokinet. 2002;41(12):901–11. doi:10.2165/00003088-200241120-00001.

    Article  CAS  PubMed  Google Scholar 

  9. Strayer DS. Viral gene delivery. Expert Opin Investig Drugs. 1999;8(12):2159–72. doi:10.1517/13543784.8.12.2159.

    Article  CAS  PubMed  Google Scholar 

  10. Khatri NI, Rathi MN, Kolte AA, Kore GG, Lalan MS, Trehan S, et al. Patents review in siRNA delivery for pulmonary disorders. Recent Patents Drug Deliv Formul. 2012;6(1):45–65.

    Article  CAS  Google Scholar 

  11. Khatri N, Baradia D, Vhora I, Rathi M, Misra A. cRGD grafted liposomes containing inorganic nano-precipitate complexed siRNA for intracellular delivery in cancer cells. J Control Release. 2014;182:45–57. doi:10.1016/j.jconrel.2014.03.003.

    Article  CAS  PubMed  Google Scholar 

  12. Oku N, Namba Y. Glucuronate-modified, long-circulating liposomes for the delivery of anticancer agents. Methods Enzymol. 2005;391:145–62. doi:10.1016/s0076-6879(05)91008-2.

    Article  CAS  PubMed  Google Scholar 

  13. van Winden ECA, Crommelin DJA. Long term stability of freeze-dried, lyoprotected doxorubicin liposomes. Eur J Pharm Biopharm. 1997;43(3):295–307. doi:10.1016/S0939-6411(97)00058-1.

    Article  Google Scholar 

  14. OECD guideline for testing of chemicals, OECD Test Guideline 420: acute oral toxicity—fixed dose procedure. OECD Publishing, Organization for Economic Co-operation and Development; 2008.

  15. Drummond DC, Meyer O, Hong K, Kirpotin DB, Papahadjopoulos D. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev. 1999;51(4):691–744.

    CAS  PubMed  Google Scholar 

  16. Sułkowski WW, Pentak D, Nowak K, Sułkowska A. The influence of temperature, cholesterol content and pH on liposome stability. J Mol Struct. 2005;744–747:737–47. doi:10.1016/j.molstruc.2004.11.075.

    Article  Google Scholar 

  17. De Gier J, Mandersloot JG, Van Deenen LLM. Lipid composition and permeability of liposomes. Biochim Biophys Acta Biomembr. 1968;150(4):666–75. doi:10.1016/0005-2736(68)90056-4.

    Article  Google Scholar 

  18. van der Woude I, Visser HW, ter Beest MB, Wagenaar A, Ruiters MH, Engberts JB, et al. Parameters influencing the introduction of plasmid DNA into cells by the use of synthetic amphiphiles as a carrier system. Biochim Biophys Acta. 1995;1240(1):34–40.

    Article  PubMed  Google Scholar 

  19. Zelphati O, Szoka FC. Mechanism of oligonucleotide release from cationic liposomes. Proc Natl Acad Sci. 1996;93(21):11493–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Bhattacharya S, Haldar S. The effects of cholesterol inclusion on the vesicular membranes of cationic lipids. Biochim Biophys Acta. 1996;1283(1):21–30.

    Article  PubMed  Google Scholar 

  21. Bhattacharya S, Haldar S. Interactions between cholesterol and lipids in bilayer membranes. Role of lipid headgroup and hydrocarbon chain-backbone linkage. Biochim Biophys Acta. 2000;1467(1):39–53.

    Article  CAS  PubMed  Google Scholar 

  22. Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011;63(3):136–51. doi:10.1016/j.addr.2010.04.009.

    Article  CAS  PubMed  Google Scholar 

  23. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release Off J Control Release Soc. 2000;65(1–2):271–84.

    Article  CAS  Google Scholar 

  24. Zhang Y, Yang M, Park JH, Singelyn J, Ma H, Sailor MJ, et al. A surface-charge study on cellular-uptake behavior of F3-peptide-conjugated iron oxide nanoparticles. Small (Weinheim Bergstrasse Germany). 2009;5(17):1990–6. doi:10.1002/smll.200900520.

    Article  CAS  Google Scholar 

  25. Zhang Y, Yang M, Portney NG, Cui D, Budak G, Ozbay E, et al. Zeta potential: a surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells. Biomed Microdevices. 2008;10(2):321–8. doi:10.1007/s10544-007-9139-2.

    Article  CAS  PubMed  Google Scholar 

  26. Haupenthal J, Baehr C, Kiermayer S, Zeuzem S, Piiper A. Inhibition of RNAse A family enzymes prevents degradation and loss of silencing activity of siRNAs in serum. Biochem Pharmacol. 2006;71(5):702–10. doi:10.1016/j.bcp.2005.11.015.

    Article  CAS  PubMed  Google Scholar 

  27. Subramanian N, Murthy RS. Use of electrolyte induced flocculation technique for an in vitro steric stability study of steric stabilized liposome formulations. Die Pharm. 2004;59(1):74–6.

    CAS  Google Scholar 

  28. Lu JJ, Langer R, Chen J. A novel mechanism is involved in cationic lipid-mediated functional siRNA delivery. Mol Pharm. 2009;6(3):763–71. doi:10.1021/mp900023v.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Takahashi T, Kono K, Itoh T, Emi N, Takagishi T. Synthesis of novel cationic lipids having polyamidoamine dendrons and their transfection activity. Bioconjug Chem. 2003;14(4):764–73. doi:10.1021/bc025663f.

    Article  CAS  PubMed  Google Scholar 

  30. Martino S, di Girolamo I, Tiribuzi R, Angelo F, Datti A, et al. Efficient siRNA delivery by the cationic liposome DOTAP in human hematopoietic stem cells differentiating into dendritic cells. J Biomed Biotechnol. 2009;2009. doi: 10.1155/2009/410260.

  31. Terp MC, Bauer F, Sugimoto Y, Yu B, Brueggemeier RW, Lee LJ, et al. Differential efficacy of DOTAP enantiomers for siRNA delivery in vitro. Int J Pharm. 2012;430(1–2):328–34. doi:10.1016/j.ijpharm.2012.04.017.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Ma Z, Li J, He F, Wilson A, Pitt B, Li S. Cationic lipids enhance siRNA-mediated interferon response in mice. Biochem Biophys Res Commun. 2005;330(3):755–9. doi:10.1016/j.bbrc.2005.03.041.

    Article  CAS  PubMed  Google Scholar 

  33. Dominska M, Dykxhoorn DM. Breaking down the barriers: siRNA delivery and endosome escape. J Cell Sci. 2010;123(8):1183–9.

    Article  CAS  PubMed  Google Scholar 

  34. Xu Y, Szoka Jr FC. Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry. 1996;35(18):5616–23. doi:10.1021/bi9602019.

    Article  CAS  PubMed  Google Scholar 

  35. Zhou X, Huang L. DNA transfection mediated by cationic liposomes containing lipopolylysine: characterization and mechanism of action. Biochim Biophys Acta (BBA) Biomembr. 1994;1189(2):195–203. doi:10.1016/0005-2736(94)90066-3.

    Article  CAS  Google Scholar 

  36. Zuhorn IS, Bakowsky U, Polushkin E, Visser WH, Stuart MC, Engberts JB, et al. Nonbilayer phase of lipoplex-membrane mixture determines endosomal escape of genetic cargo and transfection efficiency. Mol Ther J Am Soc Gene Ther. 2005;11(5):801–10. doi:10.1016/j.ymthe.2004.12.018.

    Article  CAS  Google Scholar 

  37. Chen C, Han D, Cai C, Tang X. An overview of liposome lyophilization and its future potential. J Control Release Off J Control Release Soc. 2010;142(3):299–311. doi:10.1016/j.jconrel.2009.10.024.

    Article  CAS  Google Scholar 

  38. Lewis DA, Alpar HO. Erhythrocytes as microvesicles. In: Danbrow M, editor. Microcapsules and nanoparticles in medicine and pharmacy. FL: CRC Press; 1991. p. 299–314.

    Google Scholar 

  39. Fildes F. Liposomes: the industrial view point. in: liposomes from physical structure to therapeutic applications. New York: Elsevier Biomedical Press; 1998.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge the TIFAC CORE in NDDS, Government of India, New Delhi, for providing the research facilities to the team and Department of Biotechnology (DBT-SBIRI), New Delhi, India for financial assistance. The authors also acknowledge Dr. Vikram Sarabhai Science Block, DBT-ILSPARE, Faculty of Science, M. S. University, Vadodara for providing facility to carry out cell uptake studies.

Conflict of Interest

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ambikanandan Misra.

Additional information

Guest editors: Mahavir B. Chougule and Chalet Tan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatri, N., Baradia, D., Vhora, I. et al. Development and Characterization of siRNA Lipoplexes: Effect of Different Lipids, In Vitro Evaluation in Cancerous Cell Lines and In Vivo Toxicity Study. AAPS PharmSciTech 15, 1630–1643 (2014). https://doi.org/10.1208/s12249-014-0193-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0193-9

KEY WORDS

Navigation