Skip to main content
Log in

Physicochemical Characterization of Iron Carbohydrate Colloid Drug Products

  • Review Article
  • Theme: Nanotechnology in Complex Drug Products: Learning from the Past, Preparing for the Future
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Iron carbohydrate colloid drug products are intravenously administered to patients with chronic kidney disease for the treatment of iron deficiency anemia. Physicochemical characterization of iron colloids is critical to establish pharmaceutical equivalence between an innovator iron colloid product and generic version. The purpose of this review is to summarize literature-reported techniques for physicochemical characterization of iron carbohydrate colloid drug products. The mechanisms, reported testing results, and common technical pitfalls for individual characterization test are discussed. A better understanding of the physicochemical characterization techniques will facilitate generic iron carbohydrate colloid product development, accelerate products to market, and ensure iron carbohydrate colloid product quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AAS:

Atomic absorption spectroscopy

AFM:

Atomic force microscopy

AUC:

Analytical ultracentrifugation

BDI:

Bleomycin-detectable iron

DLS:

Dynamic light scattering

DPP:

Differential pulse polarography

DSC:

Differential scanning calorimetry

EDX:

Energy-dispersive X-ray

EMR:

Electron magnetic resonance

EPR:

Electron paramagnetic resonance

ESA:

Electrokinetic sonic amplitude

ESR:

Electron spin resonance

EXAFS:

Extended X-ray absorption fine structure

FT-IR:

Fourier transform infrared spectroscopy

GPC:

Gel permeation chromatography

HPLC:

High-performance liquid chromatography

ICP-MS:

Inductively coupled plasma mass spectrometry

MDA:

Malondialdehyde

M aap :

Apparent molecular weight

M n :

Number-average molecular weight

M w :

Weight-average molecular weight

MPS:

Mononuclear phagocyte system

NEXAFS:

Near-edge X-ray absorption fine structure

NMR:

Nuclear magnetic resonance

NPP:

Normal pulse polarography

NTA:

Nitrilotriacetate

NTBI:

Nontransferrin-bound iron

OGD:

Office of Generic Drugs

SLS:

Static light scattering

SQUID:

Superconducting quantum interference device

STEM:

Scanning transmission electron microscope

TBA:

Thiobarbituric acid

TBI:

Transferrin-bound iron

TEM:

Transmission electron microscopy

TEM/NBED:

Transmission electron microscopy/nano beam electron diffraction

TEM/SAED:

Transmission electron microscopy/selected area electron diffraction

TGA:

Thermal gravimetric analysis

USP:

United States Pharmacopeia

UV/Vis:

Ultraviolet-visible spectroscopy

VSM:

Vibrating sample magnetometer

XAS:

X-ray absorption spectroscopy

XANES:

X-ray absorption near-edge structure

XRD:

X-ray diffraction

References

  1. Danielson BG. Structure, chemistry, and pharmacokinetics of intravenous iron agents. J Am Soc Nephrol : JASN. 2004;15(Suppl 2):S93–8.

    PubMed  Google Scholar 

  2. Silverstein SB, Rodgers GM. Parenteral iron therapy options. Am J Hematol. 2004;76(1):74–8.

    Article  CAS  PubMed  Google Scholar 

  3. Toblli JE, Cao G, Oliveri L, Angerosa M. Differences between original intravenous iron sucrose and iron sucrose similar preparations. Arzneimittelforschung. 2009;59(4):176–90.

    CAS  PubMed  Google Scholar 

  4. Jahn MR, Andreasen HB, Futterer S, Nawroth T, Schunemann V, Kolb U, et al. A comparative study of the physicochemical properties of iron isomaltoside 1000 (Monofer), a new intravenous iron preparation and its clinical implications. Eur J Pharm Biopharm : Off J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2011;78(3):480–91.

    Article  CAS  Google Scholar 

  5. FDA. Draft guidance on iron sucrose. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM297630.pdf2012.

  6. FDA. Draft guidance on ferumoxytol http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM333051.pdf2012.

  7. FDA. Draft guidance on sodium ferric gluconate complex. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM358142.pdf2013.

  8. FDA. Draft guidance on ferric carboxymaltose. https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM495022.pdf2016.

  9. FDA. Draft guidance on iron dextran https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM520240.pdf2016. Available from: https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM520240.pdf.

  10. EMA. Reflection paper on the data requirements for intravenous iron-based nano-colloidal products developed with reference to an innovator medicinal product. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2015/03/WC500184922.pdf2015.

  11. Kudasheva DS, Lai J, Ulman A, Cowman MK. Structure of carbohydrate-bound polynuclear iron oxyhydroxide nanoparticles in parenteral formulations. J Inorg Biochem. 2004;98(11):1757–69.

    Article  CAS  PubMed  Google Scholar 

  12. Bhavesh S, Barot PBP, Shelat PK, Shah GB, Mehta DM, Pathak TV. Physicochemical and toxicological characterization of sucrose bound polynuclear iron oxyhydroxide formulations. J Pharm Investig. 2015;45:35–49.

    Article  Google Scholar 

  13. Balakrishnan VS, Rao M, Kausz AT, Brenner L, Pereira BJ, Frigo TB, et al. Physicochemical properties of ferumoxytol, a new intravenous iron preparation. Eur J Clin Investig. 2009;39(6):489–96.

    Article  CAS  Google Scholar 

  14. Yang YS, Shah RB, Faustino PJ, Raw A, Yu LX, Khan MA. Thermodynamic stability assessment of a colloidal iron drug product: sodium ferric gluconate. J Pharm Sci. 2010;99(1):142–53.

    Article  CAS  PubMed  Google Scholar 

  15. Neiser S, Rentsch D, Dippon U, Kappler A, Weidler PG, Gottlicher J, et al. Physico-chemical properties of the new generation IV iron preparations ferumoxytol, iron isomaltoside 1000 and ferric carboxymaltose. Biometals : Int J Role Metal Ions Biol Biochem Med. 2015;28(4):615–35.

    Article  CAS  Google Scholar 

  16. Funk F, Long GJ, Hautot D, Buchi R, Christl I, Weidler PG. Physical and chemical characterization of therapeutic iron containing materials: a study of several superparamagnetic drug formulations with the beta-FeOOH or ferrihydrite structure. Hyperfine Interact. 2001;136(1–2):73–95.

    Article  CAS  Google Scholar 

  17. Meier T, Schropp P, Pater C, Leoni AL, Van VKT, Elford P. Physicochemical and toxicological characterization of a new generic iron sucrose preparation. Arzneimittel-Forsch. 2011;61(2):112–9.

    Article  CAS  Google Scholar 

  18. Shah RB, Yang YS, Khan MA, Raw A, Yu LX, Faustino PJ. Pharmaceutical characterization and thermodynamic stability assessment of a colloidal iron drug product: iron sucrose. Int J Pharm. 2014;464(1–2):46–52.

    Article  CAS  PubMed  Google Scholar 

  19. Van Wyck D, Anderson J, Johnson K. Labile iron in parenteral iron formulations: a quantitative and comparative study. Nephrol Dial Transplant: Off Publ Eur Dial Transplant Assoc – Eur Renal Assoc. 2004;19(3):561–5.

    Article  Google Scholar 

  20. Kohgo Y, Ikuta K, Ohtake T, Torimoto Y, Kato J. Body iron metabolism and pathophysiology of iron overload. Int J Hematol. 2008;88(1):7–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. USP. USP monographs: iron sucrose injection. 2016.

  22. Merli D, Profumo A, Dossi C. An analytical method for Fe(II) and Fe(III) determination in pharmaceutical grade iron sucrose complex and sodiumferric gluconate complex. J Pharm Anal. 2012;2(6):450–3.

    Article  CAS  Google Scholar 

  23. Jahn MR, Mrestani Y, Langguth P, Neubert RHH. CE characterization of potential toxic labile iron in colloidal parenteral iron formulations using off-capillary and on-capillary complexation with EDTA. Electrophoresis. 2007;28(14):2424–9.

    Article  CAS  PubMed  Google Scholar 

  24. Futterer S, Andrusenko I, Kolb U, Hofmeister W, Langguth P. Structural characterization of iron oxide/hydroxide nanoparticles in nine different parenteral drugs for the treatment of iron deficiency anaemia by electron diffraction (ED) and X-ray powder diffraction (XRPD). J Pharm Biomed. 2013;86:151–60.

    Article  CAS  Google Scholar 

  25. von Bonsdorff L, Lindeberg E, Sahlstedt L, Lehto J, Parkkinen J. Bleomycin-detectable iron assay for non-transferrin-bound iron in hematologic malignancies. Clin Chem. 2002;48(2):307–14.

    Google Scholar 

  26. Gutteridge JMC, Rowley DA, Halliwell B. Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts—detection of free iron in biological-systems by using bleomycin-dependent degradation of DNA. Biochem J. 1981;199(1):263–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Burkitt MJ, Milne L, Raafat A. A simple, highly sensitive and improved method for the measurement of bleomycin-detectable iron: the ‘catalytic iron index’ and its value in the assessment of iron status in haemochromatosis. Clin Sci. 2001;100(3):239–47.

    Article  CAS  PubMed  Google Scholar 

  28. Breuer W, Ronson A, Slotki IN, Abramov A, Hershko C, Cabantchik ZI. The assessment of serum nontransferrin-bound iron in chelation therapy and iron supplementation. Blood. 2000;95(9):2975–82.

    CAS  PubMed  Google Scholar 

  29. Garcic A. Highly sensitive, simple determination of serum iron using chromazurol-B. Clin Chim Acta. 1979;94(2):115–9.

    Article  CAS  PubMed  Google Scholar 

  30. Perry RD, Sanclemente CL. Determination of iron with bathophenanthroline following an improved procedure for reduction of iron(III) ions. Analyst. 1977;102(1211):114–9.

    Article  CAS  Google Scholar 

  31. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gutierrez L, Morales MD, Lazaro FJ. Magnetostructural study of iron sucrose. J Magn Magn Mater. 2005;293(1):69–74.

    Article  CAS  Google Scholar 

  33. Bullivant JP, Zhao S, Willenberg BJ, Kozissnik B, Batich CD, Dobson J. Materials characterization of feraheme/ferumoxytol and preliminary evaluation of its potential for magnetic fluid hyperthermia. Int J Mol Sci. 2013;14(9):17501–10.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wu Y, Petrochenko P, Chen L, Wong SY, Absar M, Choi S, et al. Core size determination and structural characterization of intravenous iron complexes by cryogenic transmission electron microscopy. Int J Pharm. 2016;505(1–2):167–74.

    Article  CAS  PubMed  Google Scholar 

  35. Andersen HL, Christensen M. In situ powder X-ray diffraction study of magnetic CoFe2O4 nanocrystallite synthesis. Nano. 2015;7(8):3481–90.

    CAS  Google Scholar 

  36. Iman M, Huang Z, Szoka FC Jr, Jaafari MR. Characterization of the colloidal properties, in vitro antifungal activity, antileishmanial activity and toxicity in mice of a di-stigma-steryl-hemi-succinoyl-glycero-phosphocholine liposome-intercalated amphotericin B. Int J Pharm. 2011;408(1–2):163–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barot BS, Parejiya PB, Mehta DM, Shelat PK, Shah GB. Physicochemical and structural characterization of iron-sucrose formulations: a comparative study. Pharm Dev Technol. 2014;19(5):513–20.

    Article  CAS  PubMed  Google Scholar 

  38. Koralewski M, Pochylski M, Gierszewski J. Magnetic properties of ferritin and akaganeite nanoparticles in aqueous suspension. J Nanopart Res. 2013;15(9):1902.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Frankel RB, Papaefthymiou GC, Watt GD. Variation of superparamagnetic properties with iron loading in mammalian ferritin. Hyperfine Interact. 1991;66(1–4):71–82.

    Article  CAS  Google Scholar 

  40. Prester M, Drobac D, Marohnic Z. Magnetic dynamics studies of the newest-generation iron deficiency drugs based on ferumoxytol and iron isomaltoside 1000. J Appl Phys. 2014;116(4).

  41. EMA, CHMP assessment report Rienso; common name: ferumoxytol; procedure no.: EMEA/H/C/002215. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/002215/WC500129751.pdf2012.

  42. Wang XM, Zhu MQ, Koopal LK, Li W, Xu WQ, Liu F, et al. Effects of crystallite size on the structure and magnetism of ferrihydrite. Environ Sci-Nano. 2016;3(1):190–202.

    Article  Google Scholar 

  43. Guyodo YBP, Till JL, Ona-Nguema G, Lagroix F and Menguy N. Constraining the origins of the magnetism of lepidocrocite (γ-FeOOH): a Mössbauer and magnetization study. Front Earth Sci. 2016;4(28).

  44. Bendersky LA, Gayle FW. Electron diffraction using transmission electron microscopy. J Res Natl Inst Stan. 2001;106(6):997–1012.

    Article  CAS  Google Scholar 

  45. Schamp CT, Jesser WA. On the measurement of lattice parameters in a collection of nanoparticles by transmission electron diffraction. Ultramicroscopy. 2005;103(2):165–72.

    Article  CAS  PubMed  Google Scholar 

  46. Mugnaioli E, Capitani G, Nieto F, Mellini M. Accurate and precise lattice parameters by selected-area electron diffraction in the transmission electron microscope. Am Mineral. 2009;94(5–6):793–800.

    Article  CAS  Google Scholar 

  47. Gupta A, Pratt RD, Crumbliss AL. Ferrous iron content of intravenous iron formulations. Biometals: Int J Role Metal Ions Biol Biochem Med. 2016;29(3):411–5.

    Article  CAS  Google Scholar 

  48. Murad E. Magnetic properties of microcrystalline iron(III) oxides and related materials as reflected in their Mossbauer spectra. Phys Chem Miner. 1996;23(4–5):248–62.

    CAS  Google Scholar 

  49. Fultz B. Mössbauer spectrometry. In: Kaufmann E, editor. Characterization of materials. New York: Wiley; 2011.

    Google Scholar 

  50. Oshtrakh MI, Semionkin VA, Prokopenko PG, Milder OB, Livshits AB, Kozlov AA. Hyperfine interactions in the iron cores from various pharmaceutically important iron-dextran complexes and human ferritin: a comparative study by Mossbauer spectroscopy. Int J Biol Macromol. 2001;29(4–5):303–14.

    Article  CAS  PubMed  Google Scholar 

  51. Coe EM, Bowen LH, Bereman RD, Speer JA, Monte WT, Scaggs L. A study of an iron dextran complex by Mossbauer-spectroscopy and X-ray-diffraction. J Inorg Biochem. 1995;57(1):63–71.

    Article  CAS  Google Scholar 

  52. Sartoratto PPC, Caiado KL, Pedroza RC, da Silva SW, Morais PC. The thermal stability of maghemite-silica nanocomposites: an investigation using X-ray diffraction and Raman spectroscopy. J Alloy Compd. 2007;434:650–4.

    Article  Google Scholar 

  53. da Silva SW, Pedroza RC, Sartoratto PPC, Rezende DR, Neto AVD, Soler MAG, et al. Raman spectroscopy of cobalt ferrite nanocomposite in silica matrix prepared by sol-gel method. J Non-Cryst Solids. 2006;352(9–20):1602–6.

    Article  Google Scholar 

  54. Szybowicz M, Koralewski M, Karon J, Melnikova L. Micro-Raman spectroscopy of natural and synthetic ferritins and their mimetics. Acta Phys Pol A. 2015;127(2):534–6.

    Article  CAS  Google Scholar 

  55. Ascone I. X-ray absorption spectroscopy for beginners http://www.iucr.org/__data/assets/pdf_file/0004/60637/IUCr2011-XAFS-Tutorial_-Ascone.pdf2011 [Nov 3, 2015].

  56. Theil EC, Sayers DE, Brown MA. Similarity of the structure of ferritin and iron-dextran (Imferon) determined by extended X-ray absorption fine-structure analysis. J Biol Chem. 1979;254(17):8132–4.

    CAS  PubMed  Google Scholar 

  57. Coe EM, Bowen LH, Speer JA, Wang ZH, Sayers DE, Bereman RD. The recharacterization of a polysaccharide iron complex (Niferex). J Inorg Biochem. 1995;58(4):269–78.

    Article  CAS  PubMed  Google Scholar 

  58. Slavov L, Abrashev MV, Merodiiska T, Gelev C, Vandenberghe RE, Markova-Deneva I, et al. Raman spectroscopy investigation of magnetite nanoparticles in ferrofluids. J Magn Magn Mater. 2010;322(14):1904–11.

    Article  CAS  Google Scholar 

  59. Oshtrakh MI, Milder OB, Semionkin VA. Determination of the iron state in ferrous iron containing vitamins and dietary supplements: application of Mossbauer spectroscopy. J Pharm Biomed Anal. 2006;40(5):1281–7.

    Article  CAS  PubMed  Google Scholar 

  60. Dobosz B, Krzyminiewski R, Schroeder G, Kurczewska J. Electron paramagnetic resonance as an effective method for a characterization of functionalized iron oxide. J Phys Chem Solids. 2014;75(5):594–8.

    Article  CAS  Google Scholar 

  61. Sur SK, Cooney TF. Electron-paramagnetic resonance study of iron(III) and manganese(II) in the glassy and crystalline environments of synthetic fayalite and tephroite. Phys Chem Miner. 1989;16(7):693–6.

    Article  CAS  Google Scholar 

  62. Somsook E, Hinsin D, Buakhrong P, Teanchai R, Mophan N, Pohmakotr M, et al. Interactions between iron(III) and sucrose, dextran, or starch in complexes. Carbohyd Polym. 2005;61(3):281–7.

    Article  CAS  Google Scholar 

  63. Ohnishi T, Asakura T, Yonetani T, Chance B. Electron paramagnetic resonance studies at temperatures below 77 degrees K on iron-sulfur proteins of yeast and bovine heart submitochondrial particles. J Biol Chem. 1971;246(19):5960–4.

    CAS  Google Scholar 

  64. Wardzynski W, Baran M, Szymczak H. Electron-paramagnetic resonance of Fe-3+ in bismuth germanium oxide single-crystals. Physica B & C. 1981;111(1):47–50.

    Article  CAS  Google Scholar 

  65. Beardwood P, Gibson JF, Bertrand P, Gayda JP. Temperature-dependence of the electronic spin-lattice relaxation-time in a 2-iron-2-sulfur model complex. Biochim Biophys Acta. 1983;742(2):426–33.

    Article  CAS  PubMed  Google Scholar 

  66. GarciaArmada P, Losada J, de VicentePerez S. Cation analysis scheme by differential pulse polarography. J Chem Educ. 1996;73(6):544–7.

    Article  CAS  Google Scholar 

  67. Arcon I, Kolar J, Kodre A, Hanzel D, Strlic M. XANES analysis of Fe valence in iron gall inks. X-Ray Spectrom. 2007;36(3):199–205.

    Article  CAS  Google Scholar 

  68. Kastele X, Sturm C, Klufers P. C-13 NMR spectroscopy as a tool for the in situ characterisation of iron-supplementing preparations. Eur J Pharm Biopharm. 2014;86(3):469–77.

    Article  CAS  PubMed  Google Scholar 

  69. Usselman RJ, Russek SE, Klem MT, Allen MA, Douglas T, Young M, et al. Temperature dependence of electron magnetic resonance spectra of iron oxide nanoparticles mineralized in Listeria innocua protein cages. J Appl Phys. 2012;112(8):4701–6.

    Article  Google Scholar 

  70. Evans DF. The determination of the paramagnetic susceptibility of substances in solution by nuclear magnetic resonance. J Chem Soc. 1959:2003–5.

  71. Braun A, Couteau O, Franks K, Kestens V, Roebben G, Lamberty A, et al. Validation of dynamic light scattering and centrifugal liquid sedimentation methods for nanoparticle characterisation. Adv Powder Technol. 2011;22(6):766–70.

    Article  CAS  Google Scholar 

  72. NIST-NCL. NIST - NCL joint assay protocol: measuring the size of nanoparticles in aqueous media using batch-mode dynamic light scattering 2010.

  73. Holloway C, Mueller-Berghaus J, Lima BS, Lee S, Wyatt JS, Nicholas JM, et al. Scientific considerations for complex drugs in light of established and emerging regulatory guidance. Ann N Y Acad Sci. 2012;1276:26–36.

    Article  PubMed  Google Scholar 

  74. Borchard G, Fluhmann B, Muhlebach S. Nanoparticle iron medicinal products—requirements for approval of intended copies of non-biological complex drugs (NBCD) and the importance of clinical comparative studies. Regul Toxicol Pharmacol. 2012;64(2):324–8.

    Article  CAS  PubMed  Google Scholar 

  75. Schellekens H, Klinger E, Muhlebach S, Brin JF, Storm G, Crommelin DJ. The therapeutic equivalence of complex drugs. Regul Toxicol Pharmacol: RTP. 2011;59(1):176–83.

    Article  CAS  PubMed  Google Scholar 

  76. Luitpold Pharmaceuticals Inc., 2005 Citizen petition: generic equivalents and pharmaceutical alternatives of iron sucrose injection, USP (Docket No. FDA-2005-P-0319). https://www.regulations.gov/document?D=FDA-2005-P-0319-0019

  77. Watson Pharma Inc., 2004 Citizen petition on ferrlecit (Docket No. FDA-2004-P-0070). https://www.fda.gov/ohrms/dockets/dailys/04/feb04/021304/04p-0070-cp00001-01-vol1.pdf.

  78. Rottembourg J, Kadri A, Leonard E, Dansaert A, Lafuma A. Do two intravenous iron sucrose preparations have the same efficacy? Nephrol Dial Transplant: Off Publ Eur Dial Transplant Assoc - Eur Renal Assoc. 2011;26(10):3262–7.

    Article  CAS  Google Scholar 

  79. Rottembourg JGA, Diaconita M, Kadri A. The complete study of the switch from iron-sucrose originator to iron-sucrose similar and vice versa in hemodialysis patients. J Kidney. 2016;2(1):110.

    Google Scholar 

  80. Stein J, Dignass A, Chow KU. Clinical case reports raise doubts about the therapeutic equivalence of an iron sucrose similar preparation compared with iron sucrose originator. Curr Med Res Opin. 2012;28(2):241–3.

    Article  CAS  PubMed  Google Scholar 

  81. Lee ES, Park BR, Kim JS, Choi GY, Lee JJ, Lee IS. Comparison of adverse event profile of intravenous iron sucrose and iron sucrose similar in postpartum and gynecologic operative patients. Curr Med Res Opin. 2013;29(2):141–7.

    Article  CAS  PubMed  Google Scholar 

  82. Toblli JE, Cao G, Oliveri L, Angerosa M. Comparison of oxidative stress and inflammation induced by different intravenous iron sucrose similar preparations in a rat model. Inflamm Allergy Drug Targets. 2012;11(1):66–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Toblli JCG, Oliveri L, Angerosa M. Differences between the original iron sucrose complex iron sucrose complex Venofer® and the iron sucrose similar Generis®, and potential implications. Port J Nephrol Hypertension. 2009;23(1):53–63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Zou.

Ethics declarations

Disclaimer

This article reflects the views of the authors and should not be construed to represent any US FDA determination or policy. The mention of commercial products, their sources, or their use in connection with material reported herein is not to be construed as either an actual or implied endorsement of such products by the Department of Health and Human Services.

Additional information

Guest Editors: Katherine Tyner, Sau (Larry) Lee, and Marc Wolfgang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, P., Tyner, K., Raw, A. et al. Physicochemical Characterization of Iron Carbohydrate Colloid Drug Products. AAPS J 19, 1359–1376 (2017). https://doi.org/10.1208/s12248-017-0126-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-017-0126-0

KEY WORDS

Navigation