Skip to main content

Advertisement

Log in

Scientific and Regulatory Considerations for Generic Complex Drug Products Containing Nanomaterials

  • Review Article
  • Theme: Nanotechnology in Complex Drug Products: Learning from the Past, Preparing for the Future
  • Published:
The AAPS Journal Aims and scope Submit manuscript

ABSTRACT

In the past few decades, the development of medicine at the nanoscale has been applied to oral and parenteral dosage forms in a wide range of therapeutic areas to enhance drug delivery and reduce toxicity. An obvious response to these benefits is reflected in higher market shares of complex drug products containing nanomaterials than that of conventional formulations containing the same active ingredient. The surging market interest has encouraged the pharmaceutical industry to develop cost-effective generic versions of complex drug products based on nanotechnology when the associated patent and exclusivity on the reference products have expired. Due to their complex nature, nanotechnology-based drugs present unique challenges in determining equivalence standards between generic and innovator products. This manuscript attempts to provide the scientific rationales and regulatory considerations of key equivalence standards (e.g., in vivo studies and in vitro physicochemical characterization) for oral drugs containing nanomaterials, iron-carbohydrate complexes, liposomes, protein-bound drugs, nanotube-forming drugs, and nano emulsions. It also presents active research studies in bridging regulatory and scientific gaps for establishing equivalence of complex products containing nanomaterials. We hope that open communication among industry, academia, and regulatory agencies will accelerate the development and approval processes of generic complex products based on nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. Constantino T. IMS health forecasts global drug spending to increase 30 percent by 2020, to $1.4 trillion, as medicine use gap narrows (https://www.imshealth.com/en/about-us/news/ims-health-forecasts-global-drug-spending-to-increase-30-percent-by-2020). IMS Health Nov 18, 2015.

  2. FDA. Orange book: approved drug products with therapeutic equivalence evaluations. 36th ed. pp. vii. http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/UCM071436.pdf2016.

  3. FDA. Guidance for Industry: Bioequivalence Studies with Pharmacokinetic Endpoints for Drugs Submitted under an ANDA. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm377465.pdf2013.

  4. FDA. Guidance for Industry: Considering Whether an FDA-Regulated Product Involves the Application of Nanotechnology. . http://www.fda.gov/downloads/RegulatoryInformation/Guidances/UCM401695.pdf2014.

  5. FDA. Guidance for Industry: Liposome Drug Products - chemistry, manufacturing, and controls; human pharmacokinetics and bioavailability; and labeling documentation. . http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm070570.pdf2015.

  6. FDA. Product-specific recommendations for generic drug development. http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm075207.htm.

  7. Zhang L, Wang S, Zhang M, Sun J. Nanocarriers for oral drug delivery. J Drug Target. 2013;21(6):515–27.

    Article  CAS  PubMed  Google Scholar 

  8. Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev. 2012;64(6):557–70.

    Article  CAS  PubMed  Google Scholar 

  9. Shegokar R, Müller RH. Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. Int J Pharm. 2010;399(1):129–39.

    Article  CAS  PubMed  Google Scholar 

  10. Mishra AK, Vachon MG, Guivarc’h P-H, Snow RA, Pace GW. IDD technology: oral delivery of water insoluble drugs using phospholipid-stabilized microparticulate IDD formulations. In: Rathbone MJ, Hadgraft J, Roberts MS, editors. Modified-release drug delivery technology. New York: Marcel Dekker; 2002. p. 151–75.

    Chapter  Google Scholar 

  11. Kesisoglou F, Panmai S, Wu Y. Nanosizing—oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev. 2007;59(7):631–44.

    Article  CAS  PubMed  Google Scholar 

  12. Deschamps B, Musaji N, Gillespie JA. Food effect on the bioavailability of two distinct formulations of megestrol acetate oral suspension. Int J Nanomedicine. 2009;4:185.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Tierney TB, Guo Y, Beloshapkin S, Rasmuson ÅC, Hudson SP. Investigation of the particle growth of fenofibrate following antisolvent precipitation and freeze–drying. Cryst Growth Des. 2015;15(11):5213–22.

    Article  CAS  Google Scholar 

  14. Wu Y, Loper A, Landis E, Hettrick L, Novak L, Lynn K, et al. The role of biopharmaceutics in the development of a clinical nanoparticle formulation of MK-0869: a beagle dog model predicts improved bioavailability and diminished food effect on absorption in human. Int J Pharm. 2004;285(1):135–46.

    Article  CAS  PubMed  Google Scholar 

  15. Purvis T, Overhoff KA, Sinswat P, Williams RO. Immunosuppressant drugs. In: Williams RO, Taft DR, McConville JT, editors. Advanced drug formulation design to optimize therapeutic outcomes. Boca Raton, FL: CRC Press, Taylor & Francis Group; 2007.

    Google Scholar 

  16. Gao Z-G, Choi H-G, Shin H-J, Park K-M, Lim S-J, Hwang K-J, et al. Physicochemical characterization and evaluation of a microemulsion system for oral delivery of cyclosporin A. Int J Pharm. 1998;161(1):75–86.

    Article  CAS  Google Scholar 

  17. Weissig V, Pettinger TK, Murdock N. Nanopharmaceuticals (part 1): products on the market. Int J Nanomedicine. 2014;9:4357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Desai PP, Date AA, Patravale VB. Overcoming poor oral bioavailability using nanoparticle formulations—opportunities and limitations. Drug Discov Today Technol. 2012;9(2):e87–95.

    Article  CAS  Google Scholar 

  19. Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B. 2015;5(5):442–53.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wu Y, Petrochenko P, Chen L, Wong SY, Absar M, Choi S, et al. Core size determination and structural characterization of intravenous iron complexes by cryogenic transmission electron microscopy. Int J Pharm. 2016;505(1–2):167–74. doi:10.1016/j.ijpharm.2016.03.029.

    Article  CAS  PubMed  Google Scholar 

  21. Jahn MR, Andreasen HB, Futterer S, Nawroth T, Schunemann V, Kolb U, et al. A comparative study of the physicochemical properties of iron isomaltoside 1000 (Monofer), a new intravenous iron preparation and its clinical implications. Eur J Pharm Biopharm: Off J Arbeitsgemeinschaft Pharm Verfahrenstec eV. 2011;78(3):480–91. doi:10.1016/j.ejpb.2011.03.016.

    Article  CAS  Google Scholar 

  22. Geisser P, Burckhardt S. The pharmacokinetics and pharmacodynamics of iron preparations. Pharmaceutics. 2011;3(1):12–33. doi:10.3390/pharmaceutics3010012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Beshara S, Lundqvist H, Sundin J, Lubberink M, Tolmachev V, Valind S, et al. Pharmacokinetics and red cell utilization of iron(III) hydroxide-sucrose complex in anaemic patients: a study using positron emission tomography. Br J Haematol. 1999;104(2):296–302.

    Article  CAS  PubMed  Google Scholar 

  24. Sanofi Aventis US. FERRLECIT Label. http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/020955s013s015lbl.pdf2011.

  25. Serum iron test. https://medlineplus.gov/ency/article/003488.htm

  26. Van Wyck D, Anderson J, Johnson K. Labile iron in parenteral iron formulations: a quantitative and comparative study. Nephrol Dial Transplant. 2004;19(3):561–5.

    Article  PubMed  Google Scholar 

  27. Danielson BG, Salmonson T, Derendorf H, Geisser P. Pharmacokinetics of iron(III)-hydroxide sucrose complex after a single intravenous dose in healthy volunteers. Arzneimittelforschung. 1996;46(6):615–21.

    CAS  PubMed  Google Scholar 

  28. Seligman PA, Dahl NV, Strobos J, Kimko HC, Schleicher RB, Jones M, et al. Single-dose pharmacokinetics of sodium ferric gluconate complex in iron-deficient subjects. Pharmacotherapy. 2004;24(5):574–83.

    Article  CAS  PubMed  Google Scholar 

  29. Theil EC. Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annu Rev Biochem. 1987;56:289–315. doi:10.1146/annurev.bi.56.070187.001445.

    Article  CAS  PubMed  Google Scholar 

  30. Andrews SC, Arosio P, Bottke W, Briat JF, von Darl M, Harrison PM, et al. Structure, function, and evolution of ferritins. J Inorg Biochem. 1992;47(3–4):161–74.

    Article  CAS  PubMed  Google Scholar 

  31. Provenzano R, Schiller B, Rao M, Coyne D, Brenner L, Pereira BJG. Ferumoxytol as an intravenous iron replacement therapy in hemodialysis patients. Clin J Am Soc Nephro. 2009;4(2):386–93. doi:10.2215/Cjn.02840608.

    Article  CAS  Google Scholar 

  32. Jacobs EM, Hendriks JC, van Tits BL, Evans PJ, Breuer W, Liu DY, et al. Results of an international round robin for the quantification of serum non-transferrin-bound iron: need for defining standardization and a clinically relevant isoform. Anal Biochem. 2005;341(2):241–50. doi:10.1016/j.ab.2005.03.008.

    Article  CAS  PubMed  Google Scholar 

  33. Pai AB, Boyd AV, McQuade CR, Harford A, Norenberg JP, Zager PG. Comparison of oxidative stress markers after intravenous administration of iron dextran, sodium ferric gluconate, and iron sucrose in patients undergoing hemodialysis. Pharmacotherapy. 2007;27(3):343–50. doi:10.1592/phco.27.3.343.

    Article  CAS  PubMed  Google Scholar 

  34. Chouly C, Pouliquen D, Lucet I, Jeune JJ, Jallet P. Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J Microencapsul. 1996;13(3):245–55.

    Article  CAS  PubMed  Google Scholar 

  35. Ellison HL, Hazel F. Influence of concentration and age on some colloidal properties of ferric chloride solutions. J Phys Chem-Us. 1935;39(6):829–35. doi:10.1021/J150366a011.

    Article  CAS  Google Scholar 

  36. Whitehead TH. The complex compound theory of colloidal oxides. Chem Rev. 1937;21(1):113–28. doi:10.1021/Cr60068a004.

    Article  CAS  Google Scholar 

  37. Lawrence R. Development and comparison of iron dextran products. PDA J Pharm Sci Technol. 1998;52(5):190–7.

    CAS  PubMed  Google Scholar 

  38. Yang Y, Shah RB, Faustino PJ, Raw A, Yu LX, Khan MA. Thermodynamic stability assessment of a colloidal iron drug product: sodium ferric gluconate. J Pharm Sci. 2010;99(1):142–53. doi:10.1002/jps.21806.

    Article  CAS  PubMed  Google Scholar 

  39. Hasan DM, Amans M, Tihan T, Hess C, Guo Y, Cha S, et al. Ferumoxytol-enhanced MRI to image inflammation within human brain arteriovenous malformations: a pilot investigation. Transl Stroke Res. 2012;3(Supplement 1):166–73. doi:10.1007/s12975-012-0172-y.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Agarwal R. Transferrin saturation with intravenous irons: an in vitro study. Kidney Int. 2004;66(3):1139–44.

    Article  CAS  PubMed  Google Scholar 

  41. Toblli JE, Cao G, Oliveri L, Angerosa M. Comparison of oxidative stress and inflammation induced by different intravenous iron sucrose similar preparations in a rat model. Inflamm Allergy Drug Targets. 2012;11(1):66–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Research Funding Announcement (RFA-FD-13-017) Development of bio-relevant assay to determine labile iron in the parenteral iron complex product. The U.S. Food and Drug Administration (https://grants.nih.gov/grants/guide/rfa-files/RFA-FD-13-017.html). 2013.

  43. Research Funding Announcement (RFA-FD-14-019) Evaluation of iron species in healthy subjects treated with generic and reference sodium ferric gluconate. The U.S. Food and Drug Administration (http://grants.nih.gov/grants/guide/rfa-files/RFA-FD-14-019.html). 2014.

  44. Mrozek E, Rhoades CA, Allen J, Hade EM, Shapiro CL. Phase I trial of liposomal encapsulated doxorubicin (Myocet; D-99) and weekly docetaxel in advanced breast cancer patients. Ann Oncol: Off J Eur Soc Med Oncol / ESMO. 2005;16(7):1087–93. doi:10.1093/annonc/mdi209.

    Article  CAS  Google Scholar 

  45. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102.

  46. Zheng N JW, Lionberger R, Yu L. Bioequivalence for Liposomal Drug Products. FDA Bioequivalence Standards 2014.

  47. Schellekens H, Klinger E, Muhlebach S, Brin JF, Storm G, Crommelin DJ. The therapeutic equivalence of complex drugs. Regul Toxicol Pharmacol : RTP. 2011;59(1):176–83. doi:10.1016/j.yrtph.2010.09.021.

  48. Zhigaltsev IV, Maurer N, Akhong QF, Leone R, Leng E, Wang J, et al. Liposome-encapsulated vincristine, vinblastine and vinorelbine: a comparative study of drug loading and retention. J Control Release: Off J Control Release Soc. 2005;104(1):103–11. doi:10.1016/j.jconrel.2005.01.010.

    Article  CAS  Google Scholar 

  49. Drummond DC, Noble CO, Hayes ME, Park JW, Kirpotin DB. Pharmacokinetics and in vivo drug release rates in liposomal nanocarrier development. J Pharm Sci. 2008;97(11):4696–740.

    Article  CAS  PubMed  Google Scholar 

  50. Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzym Regul. 2001;41:189–207.

    Article  CAS  Google Scholar 

  51. Chowdhary RK, Shariff I, Dolphin D. Drug release characteristics of lipid based benzoporphyrin derivative. J Pharm Pharm Sci. 2003;6(1):13–9.

    CAS  PubMed  Google Scholar 

  52. Novartis. VISUDYNE Label. http://dailymed.nlm.nih.gov/dailymed/lookup.cfm?setid=31512723-9ff0-4e18-aa3a-55ab833038c6 2012.

  53. Richter AM, Waterfield E, Jain AK, Canaan AJ, Allison BA, Levy JG. Liposomal delivery of a photosensitizer, benzoporphyrin derivative monoacid ring A (BPD), to tumor tissue in a mouse tumor model. Photochem Photobiol. 1993;57(6):1000–6.

    Article  CAS  PubMed  Google Scholar 

  54. Csuhai E, Kangarlou S, Xiang TX, Ponta A, Bummer P, Choi D, et al. Determination of key parameters for a mechanism‐based model to predict doxorubicin release from actively loaded liposomes. J Pharm Sci. 2015;104(3):1087–98.

    Article  CAS  PubMed  Google Scholar 

  55. Fugit KD, Xiang T-X, Choi DH, Kangarlou S, Csuhai E, Bummer PM, et al. Mechanistic model and analysis of doxorubicin release from liposomal formulations. J Control Release: Off J Control Release Soc. 2015;217:82–91.

    Article  CAS  Google Scholar 

  56. Elsadek B, Kratz F. Impact of albumin on drug delivery—new applications on the horizon. J Control Rel: Off J Control Release Soc. 2012;157(1):4–28. doi:10.1016/j.jconrel.2011.09.069.

    Article  CAS  Google Scholar 

  57. Abraxis BioScience. ABRAXANE Label. http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/021660s031lbl.pdf 2012.

  58. Hawkins MJ, Soon-Shiong P, Desai N. Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev. 2008;60(8):876–85. doi:10.1016/j.addr.2007.08.044.

    Article  CAS  PubMed  Google Scholar 

  59. Abraxis BioScience. Abraxane. http://www.fda.gov/ohrms/dockets/ac/06/slides/2006-4235S2-02-01-FDAAbraxane.ppt2006.

  60. Sparreboom A, Scripture CD, Trieu V, Williams PJ, De T, Yang A, et al. Comparative preclinical and clinical pharmacokinetics of a cremophor-free, nanoparticle albumin-bound paclitaxel (ABI-007) and paclitaxel formulated in cremophor (Taxol). Clin Cancer Res: Off J Am Assoc Cancer Res. 2005;11(11):4136–43. doi:10.1158/1078-0432.CCR-04-2291.

    Article  CAS  Google Scholar 

  61. Desai N, Trieu V, Yao Z, Louie L, Ci S, Yang A, et al. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res: Off J Am Assoc Cancer Res. 2006;12(4):1317–24.

    Article  CAS  Google Scholar 

  62. Chen N, Brachmann C, Liu X, Pierce DW, Dey J, Kerwin WS, et al. Albumin-bound nanoparticle (nab) paclitaxel exhibits enhanced paclitaxel tissue distribution and tumor penetration. Cancer Chemother Pharmacol. 2015;76(4):699–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. EMA. Assessment Report for Abraxane-Annex 1 Summary of Product Characteristics. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000778/WC500020435.pdf2007.

  64. Sparreboom A, van Zuylen L, Brouwer E, Loos WJ, de Bruijn P, Gelderblom H, et al. Cremophor EL-mediated alteration of paclitaxel distribution in human blood: clinical pharmacokinetic implications. Cancer Res. 1999;59(7):1454–7.

    CAS  PubMed  Google Scholar 

  65. Gardner ER, Dahut W, Figg WD. Quantitative determination of total and unbound paclitaxel in human plasma following Abraxane treatment. J Chromatogr B Anal Technol Biomed Life Sci. 2008;862(1–2):213–8. doi:10.1016/j.jchromb.2007.12.013.

    Article  CAS  Google Scholar 

  66. J&J PRD. DOXIL Label: http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/050718s048lbl.pdf.

  67. Gelgene. Citizen Petition from Arnold & Porter LLP (Celgene): Table 4 and Table 5. 2015; Available from: https://www.regulations.gov/#!documentDetail;D=FDA-2015-P-0732-0001.

  68. Paal K, Shkarupin A. Paclitaxel binding to the fatty acid-induced conformation of human serum albumin—automated docking studies. Bioorg Med Chem. 2007;15(24):7568–75. doi:10.1016/j.bmc.2007.09.006.

  69. Valery C, Artzner F, Robert B, Gulick T, Keller G, Grabielle-Madelmont C, et al. Self-association process of a peptide in solution: from beta-sheet filaments to large embedded nanotubes. Biophys J. 2004;86(4):2484–501. doi:10.1016/S0006-3495(04)74304-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cherif-Cheikh R. Sustained release of peptides from pharmaceutical compositions. Google Patents; 1997.

  71. Pouget E, Fay N, Dujardin E, Jamin N, Berthault P, Perrin L, et al. Elucidation of the self-assembly pathway of lanreotide octapeptide into beta-sheet nanotubes: role of two stable intermediates. J Am Chem Soc. 2010;132(12):4230–41. doi:10.1021/ja9088023.

    Article  CAS  PubMed  Google Scholar 

  72. Valery C, Paternostre M, Robert B, Gulik-Krzywicki T, Narayanan T, Dedieu JC, et al. Biomimetic organization: octapeptide self-assembly into nanotubes of viral capsid-like dimension. Proc Natl Acad Sci U S A. 2003;100(18):10258–62. doi:10.1073/pnas.1730609100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Valery C, Pouget E, Pandit A, Verbavatz JM, Bordes L, Boisde I, et al. Molecular origin of the self-assembly of lanreotide into nanotubes: a mutational approach. Biophys J. 2008;94(5):1782–95. doi:10.1529/biophysj.107.108175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tarabout C, Roux S, Gobeaux F, Fay N, Pouget E, Meriadec C, et al. Control of peptide nanotube diameter by chemical modifications of an aromatic residue involved in a single close contact. Proc Natl Acad Sci U S A. 2011;108(19):7679–84. doi:10.1073/pnas.1017343108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gobeaux F, Fay N, Tarabout C, Meriadec C, Meneau F, Ligeti M, et al. Structural role of counterions adsorbed on self-assembled peptide nanotubes. J Am Chem Soc. 2012;134(1):723–33. doi:10.1021/ja210299g.

    Article  CAS  PubMed  Google Scholar 

  76. Badaire S, Poulin P, Maugey M, Zakri C. In situ measurements of nanotube dimensions in suspensions by depolarized dynamic light scattering. Langmuir. 2004;20(24):10367–70.

    Article  CAS  PubMed  Google Scholar 

  77. Wang SR, Liang ZY, Wang B, Zhang C. Statistical characterization of single-wall carbon nanotube length distribution. Nanotechnology. 2006;17(3):634–9. doi:10.1088/0957-4484/17/3/003.

    Article  Google Scholar 

  78. Lee SL, Saluja B, Garcia-Arieta A, Santos GM, Li Y, Lu S, et al. Regulatory considerations for approval of generic inhalation drug products in the US, EU, Brazil, China, and India. AAPS J. 2015;17(5):1285–304. doi:10.1208/s12248-015-9787-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lee SL, Yu LX, Cai B, Johnsons GR, Rosenberg AS, Cherney BW, et al. Scientific considerations for generic synthetic salmon calcitonin nasal spray products. AAPS J. 2011;13(1):14–9. doi:10.1208/s12248-010-9242-9.

    Article  CAS  PubMed  Google Scholar 

  80. FDA. FDA/CDER response to Citizen Petition from Ortho-Biotech Products, L.P.. http://www.regulations.gov/#!docketDetail;D=FDA-2009-P-02162013.

  81. Crommelin DJA. Challenges for Non-Biological Complex Drugs (NBCDs). http://www.fda.gov/downloads/ForIndustry/UserFees/GenericDrugUserFees/UCM398889.pdf2014.

  82. EMA. Reflection paper on the data requirements for intravenous liposomal products developed with reference to an innovator liposomal product. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2013/03/WC500140351.pdf2013.

  83. EMA. Reflection paper on the data requirements for intravenous iron-based nano-colloidal products developed with reference to an innovator medicinal product. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2015/03/WC500184922.pdf2015.

  84. FDA. Product Specific Bioequivalence Recommendation: Doxorubicin Hydrochloride. http://www.fda.gov/downloads/Drugs/…/Guidances/UCM199635.pdf2014.

  85. Rottembourg J, Kadri A, Leonard E, Dansaert A, Lafuma A. Do two intravenous iron sucrose preparations have the same efficacy? Nephrol Dial Transplant. 2011;26(10):3262–7. doi:10.1093/ndt/gfr024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Stein J, Dignass A, Chow KU. Clinical case reports raise doubts about the therapeutic equivalence of an iron sucrose similar preparation compared with iron sucrose originator. Curr Med Res Opin. 2012;28(2):241–3. doi:10.1185/03007995.2011.651527.

    Article  CAS  PubMed  Google Scholar 

  87. Crommelin DJ, Shah VP, Klebovich I, McNeil SE, Weinstein V, Fluhmann B, et al. The similarity question for biologicals and non-biological complex drugs. Eur J Pharm Sci. 2015;76:10–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenlei Jiang.

Ethics declarations

Disclaimer

This article reflects the views of the authors and should not be construed to represent the FDA’s views or policies. The mention of commercial products, their sources, or their use in connection with material reported herein is not to be construed as either an actual or implied endorsement of such products by the Department of Health and Human Services.

Additional information

Guest editors: Katherine Tyner, Sau (Larry) Lee, and Marc Wolfgang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, N., Sun, D.D., Zou, P. et al. Scientific and Regulatory Considerations for Generic Complex Drug Products Containing Nanomaterials. AAPS J 19, 619–631 (2017). https://doi.org/10.1208/s12248-017-0044-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-017-0044-1

KEY WORDS

Navigation