Skip to main content

Advertisement

Log in

Next Generation Ligand Binding Assays—Review of Emerging Real-Time Measurement Technologies

  • Review Article
  • Theme: Emerging Technologies in the BioAnalytical Space Applied to Large Molecule Determinations
  • Published:
The AAPS Journal Aims and scope Submit manuscript

ABSTRACT

Over the last few years, numerous ligand binding assay technologies that utilize real-time measurement have been introduced; however, an assemblage and evaluation of these technologies has not previously been published. Herein, we describe six emerging real-time measurement technologies: Maverick™, MX96 SPR™, NanoDLSay™, AMMP®/ViBE®, SoPrano™, and two Lab-on-a-Chip (LoC) microfluidic devices. The development stage gate of these technologies ranges from pre-commercial to commercially available. Due to the novelty, the application and utility of some of the technologies regarding bioanalysis are likely to evolve but it is our hope that this review will provide insight into the direction the development of real-time measurement technologies is moving and the vision of those that are taking us there. Following the technology discussions, a comprehensive summary table is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Qavi AJ, Kindt JT, Gleeson MA, Bailey RC. Anti-DNA: RNA antibodies and silicon photonic microring resonators: increased sensitivity for multiplexed microRNA detection. Anal Chem. 2011;83(15):5949–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Washburn AL, Gunn LC, Bailey RC. Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators. Anal Chem. 2009;81(22):9499–506.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Luchansky MS, Bailey RC. Rapid, multiparameter profiling of cellular secretion using silicon photonic microring resonator arrays. J Am Chem Soc. 2011;133(50):20500–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Kindt JT, Bailey RC. Chaperone probes and bead-based enhancement to improve the direct detection of mRNA using silicon photonic sensor arrays. Anal Chem. 2012;84(18):8067–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Kirk JT, Brault ND, Baehr-Jones T, Hochberg M, Jiang S, Ratner DM. Zwitterionic polymer-modified silicon microring resonators for label-free biosensing in undiluted human plasma. Biosens Bioelectron. 2013;42:100–5.

    Article  CAS  PubMed  Google Scholar 

  6. Abdiche YN, Miles A, Eckman J, Foletti D, Van Blarcom TJ, Yeung YA, et al. High-throughput epitope binning assays on label-free array-based biosensors can yield exquisite epitope discrimination that facilitates the selection of monoclonal antibodies with functional activity. PLoS One. 2014;9(3):e92451.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Schasfoort R, de Lau W, van der Kooi A, Clevers H, Engbers GH. Method for estimating the single molecular affinity. Anal Biochem. 2012;421(2):794–6.

    Article  CAS  PubMed  Google Scholar 

  8. Yang CY, Brooks E, Li Y, Denny P, Ho CM, Qi F, et al. Detection of picomolar levels of interleukin-8 in human saliva by SPR. Lab Chip. 2005;5(10):1017–23.

    Article  CAS  PubMed  Google Scholar 

  9. Muller-Renaud S, Dupont D, Dulieu P. Development of a biosensor immunoassay for the quantification of alphas1-casein in milk. J Dairy Res. 2005;72(1):57–64.

    Article  CAS  PubMed  Google Scholar 

  10. Wendler J, Vallejo LF, Rinas U, Bilitewski U. Application of an SPR-based receptor assay for the determination of biologically active recombinant bone morphogenetic protein-2. Anal Bioanal Chem. 2005;381(5):1056–64.

    Article  CAS  PubMed  Google Scholar 

  11. Hutter E, Fendler JH. Exploitation of localized surface plasmon resonance. Adv Mater. 2004;16(19):1685–706.

    Article  CAS  Google Scholar 

  12. Willets KA, Van Duyne RP. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem. 2007;58:267–97.

    Article  CAS  PubMed  Google Scholar 

  13. Mayer KM, Lee S, Liao H, Rostro BC, Fuentes A, Scully PT, et al. A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods. ACS Nano. 2008;2(4):687–92.

    Article  CAS  PubMed  Google Scholar 

  14. Tang L, Casas J, Venkataramasubramani M. Magnetic nanoparticle mediated enhancement of localized surface plasmon resonance for ultrasensitive bioanalytical assay in human blood plasma. Anal Chem. 2013;85(3):1431–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Huo Q, Colon J, Cordero A, Bogdanovic J, Baker CH, Goodison S, et al. A facile nanoparticle immunoassay for cancer biomarker discovery. J Nanobiotechnol. 2011;9:20.

    Article  CAS  Google Scholar 

  16. Bogdanovic J, Colon J, Baker C, Huo Q. A label-free nanoparticle aggregation assay for protein complex/aggregate detection and study. Anal Biochem. 2010;405(1):96–102.

    Article  CAS  PubMed  Google Scholar 

  17. Jans H, Liu X, Austin L, Maes G, Huo Q. Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies. Anal Chem. 2009;81(22):9425–32.

    Article  CAS  PubMed  Google Scholar 

  18. Wang X, Ramström O, Yan M. Dynamic light scattering as an efficient tool to study glyconanoparticle–lectin interactions. Analyst. 2011;136(20):4174–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Sánchez Pomales G, Morris TA, Falabella JB, Tarlov MJ, Zangmeister RA. A lectin based gold nanoparticle assay for probing glycosylation of glycoproteins. Biotechnol Bioeng. 2012;109(9):2240–9.

    Article  PubMed  Google Scholar 

  20. Miao XM, Xiong C, Wang WW, Ling LS, Shuai XT. Dynamic light scattering based sequence specific recognition of double stranded DNA with oligonucleotide functionalized gold nanoparticles. Chemistry A Eur J. 2011;17(40):11230–6.

    Article  CAS  Google Scholar 

  21. Cho H-H, Alderman E, Kreder N, Caro RG, Leong K, Miller MF, et al. Competitive, immunometric assay for fusion protein quantification: protein production prioritization. Anal Biochem. 2014;446:1–8.

    Article  CAS  PubMed  Google Scholar 

  22. Dickerson WM, Saab A, Leong K, Miller M, Latterich M, Beausang LA, et al. Measurement of downstream kinase activity modulation as indicator of epidermal growth factor receptor inhibitor efficacy. Anal Biochem. 2014;448:65–7.

    Article  CAS  PubMed  Google Scholar 

  23. Bow H, Pivkin IV, Diez-Silva M, Goldfless SJ, Dao M, Niles JC, et al. A microfabricated deformability-based flow cytometer with application to malaria. Lab Chip. 2011;11(6):1065–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Alshareef M, Metrakos N, Perez EJ, Azer F, Yang F, Yang X, et al. Separation of tumor cells with dielectrophoresis-based microfluidic chip. Biomicrofluidics. 2013;7(1):011803.

    Article  PubMed Central  Google Scholar 

  25. Chen Y, Li P, Huang P-H, Xie Y, Mai JD, Wang L, et al. Rare cell isolation and analysis in microfluidics. Lab Chip. 2014;14(4):626–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Wolff A, Perch-Nielsen IR, Larsen U, Friis P, Goranovic G, Poulsen CR, et al. Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter. Lab Chip. 2003;3(1):22–7.

    Article  CAS  PubMed  Google Scholar 

  27. Wang MM, Tu E, Raymond DE, Yang JM, Zhang H, Hagen N, et al. Microfluidic sorting of mammalian cells by optical force switching. Nat Biotechnol. 2004;23(1):83–7.

    Article  PubMed  Google Scholar 

  28. Sun Y, Lim C, Liu A, Ayi T, Yap P. Design, simulation and experiment of electroosmotic microfluidic chip for cell sorting. Sensors Actuators A Phys. 2007;133(2):340–8.

    Article  CAS  Google Scholar 

  29. Johansson L, Nikolajeff F, Johansson S, Thorslund S. On-chip fluorescence-activated cell sorting by an integrated miniaturized ultrasonic transducer. Anal Chem. 2009;81(13):5188–96.

    Article  CAS  PubMed  Google Scholar 

  30. Ding X, Lin S-CS, Lapsley MI, Li S, Guo X, Chan CY, et al. Standing surface acoustic wave (SSAW) based multichannel cell sorting. Lab Chip. 2012;12(21):4228–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Shi J, Huang H, Stratton Z, Huang Y, Huang TJ. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip. 2009;9(23):3354–9.

    Article  CAS  PubMed  Google Scholar 

  32. Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007;450(7173):1235–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Ignatiadis M, Reinholz M. Minimal residual disease and circulating tumor cells in breast cancer. Breast Cancer Res. 2011;13(5):222.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Fraser.

Additional information

Guest Editors: Johanna Mora and Binodh Desilva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraser, S., Cameron, M., O’Connor, E. et al. Next Generation Ligand Binding Assays—Review of Emerging Real-Time Measurement Technologies. AAPS J 16, 914–924 (2014). https://doi.org/10.1208/s12248-014-9643-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-014-9643-2

KEY WORDS

Navigation