Skip to main content
Log in

Regional-Dependent Intestinal Permeability and BCS Classification: Elucidation of pH-Related Complexity in Rats Using Pseudoephedrine

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Based on its lower Log P value relative to metoprolol, a marker for the low/high-permeability (P eff) class boundary, pseudoephedrine was provisionally classified as BCS low-permeability compound. On the other hand, following oral administration, pseudoephedrine fraction dose absorbed (F abs) and systemic bioavailability approaches 100%. This represents a challenge to the generally recognized P effF abs correlation. The purpose of this study was to elucidate the underlying mechanisms behind the confusion in pseudoephedrine’s BCS classification. Pseudoephedrine’s BCS solubility class was determined, and its physicochemical properties and intestinal permeability were thoroughly investigated, both in vitro and in vivo in rats, considering the complexity of the whole of the small intestine. Pseudoephedrine was found to be unequivocally a high-solubility compound. All of the permeability studies revealed similar phenomenon; at any given intestinal segment/pH, the permeability of metoprolol was higher than that of pseudoephedrine, however, as the intestinal region becomes progressively distal, and the pH gradually increases, pseudoephedrine’s permeability rises above that of metoprolol in the former segment. This unique permeability pattern likely explains pseudoephedrine’s complete absorption. In conclusion, pseudoephedrine is a BCS Class I compound; no discrepancy between P eff and F abs is involved in its absorption. Rather, it reflects the complexity behind P eff when considering the whole of the intestine. We propose to allow high-permeability classification to drugs with P eff that matches/exceeds the low/high class benchmark anywhere throughout the intestinal tract and not restricted necessarily to the jejunum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20.

    Article  PubMed  CAS  Google Scholar 

  2. Amidon GL, Sinko PJ, Fleisher D. Estimating human oral fraction dose absorbed: a correlation using rat intestinal membrane permeability for passive and carrier-mediated compounds. Pharm Res. 1988;5(10):651–4. doi:10.1023/a:1015927004752.

    Article  PubMed  CAS  Google Scholar 

  3. Dahan A, Miller J, Amidon G. Prediction of solubility and permeability class membership: provisional BCS classification of the world’s top oral drugs. AAPS J. 2009;11(4):740–6. doi:10.1208/s12248-009-9144-x.

    Article  PubMed  CAS  Google Scholar 

  4. Lennernäs H. Intestinal permeability and its relevance for absorption and elimination. Xenobiotica. 2007;37(10–11):1015–51.

    Article  PubMed  Google Scholar 

  5. Lennernäs H, Crison J, Amidon G. Permeability and clearance views of drug absorption: a commentary. J Pharmacokinet Pharmacodyn. 1995;23(3):333–7. doi:10.1007/bf02354289.

    Article  Google Scholar 

  6. Sinko PJ, Leesman GD, Amidon GL. Predicting fraction dose absorbed in humans using a macroscopic mass balance approach. Pharm Res. 1991;8(8):979–88. doi:10.1023/a:1015892621261.

    Article  PubMed  CAS  Google Scholar 

  7. Lennernäs H. Human intestinal permeability. J Pharm Sci. 1998;87(4):403–10.

    Article  PubMed  Google Scholar 

  8. Takagi T, Ramachandran C, Bermejo M, Yamashita S, Yu LX, Amidon GL. A provisional biopharmaceutical classification of the top 200 oral drug products in the United States, Great Britain, Spain, and Japan. Mol Pharm. 2006;3(6):631–43. doi:10.1021/mp0600182.

    Article  PubMed  CAS  Google Scholar 

  9. Kanfer I, Dowse R, Vuma V. Pharmacokinetics of oral decongestants. Pharmacother J Hum Pharmacol Drug Ther. 1993;13(6P2):116S–28S. doi:10.1002/j.1875-9114.1993.tb02780.x.

    CAS  Google Scholar 

  10. Hardman J, Limbird LE. Goodman & Gilman’s: the pharmacological basis of therapeutics. 10th ed. New York: McGraw-Hill; 2001.

    Google Scholar 

  11. Benet L, Broccatelli F, Oprea T. BDDCS applied to over 900 drugs. AAPS J. 2011;13(4):519–47. doi:10.1208/s12248-011-9290-9.

    Article  PubMed  CAS  Google Scholar 

  12. Amidon KS, Langguth P, Lennernas H, Yu L, Amidon GL. Bioequivalence of oral products and the biopharmaceutics classification system: science, regulation, and public policy. Clin Pharmacol Ther. 2011;90(3):467–70.

    Article  PubMed  CAS  Google Scholar 

  13. Dahan A, Lennernäs H, Amidon GL. The fraction dose absorbed, in humans, and high jejunal human permeability relationship. Mol Pharm. 2012;9(6):1847–51. doi:10.1021/mp300140h.

    Article  PubMed  CAS  Google Scholar 

  14. CDER/FDA. Guidance for industry: waiver of in vivo bioavailability and bioequivalence studies for immediate release dosage forms based on a biopharmaceutical slassification system. Center for Drug Evaluation and Research; 2000.

  15. Miller JM, Beig A, Carr RA, Spence JK, Dahan A. A win–win solution in oral delivery of lipophilic drugs: supersaturation via amorphous solid dispersions increases apparent solubility without sacrifice of intestinal membrane permeability. Mol Pharm. 2012;9(7):2009–16. doi:10.1021/mp300104s.

    Article  CAS  Google Scholar 

  16. Miller JM, Beig A, Carr RA, Webster GK, Dahan A. The solubility–permeability interplay when using cosolvents for solubilization: revising the way we use solubility-enabling formulations. Mol Pharm. 2012;9(3):581–90. doi:10.1021/mp200460u.

    Article  PubMed  CAS  Google Scholar 

  17. Miller JM, Beig A, Krieg BJ, Carr RA, Borchardt TB, Amidon GE, et al. The solubility–permeability interplay: mechanistic modeling and predictive application of the impact of micellar solubilization on intestinal permeation. Mol Pharm. 2011;8(5):1848–56. doi:10.1021/mp200181v.

    Article  PubMed  CAS  Google Scholar 

  18. Miller JM, Dahan A, Gupta D, Varghese S, Amidon GL. Quasi-equilibrium analysis of the ion-pair mediated membrane transport of low-permeability drugs. J Control Release. 2009;137(1):31–7. doi:10.1016/j.jconrel.2009.02.018.

    Article  PubMed  CAS  Google Scholar 

  19. Miller JM, Dahan A, Gupta D, Varghese S, Amidon GL. Enabling the intestinal absorption of highly polar antiviral agents: ion-pair facilitated membrane permeation of zanamivir heptyl ester and guanidino oseltamivir. Mol Pharm. 2010;7(4):1223–34. doi:10.1021/mp100050d.

    Article  PubMed  CAS  Google Scholar 

  20. Dahan A, Miller JM, Hoffman A, Amidon GE, Amidon GL. The solubility–permeability interplay in using cyclodextrins as pharmaceutical solubilizers: mechanistic modeling and application to progesterone. J Pharm Sci. 2010;99(6):2739–49. doi:10.1002/jps.22033.

    PubMed  CAS  Google Scholar 

  21. Wohnsland F, Faller B. High-throughput permeability pH profile and high-throughput alkane/water log P with artificial membranes. J Med Chem. 2001;44(6):923–30. doi:10.1021/jm001020e.

    Article  PubMed  CAS  Google Scholar 

  22. Dahan A, Amidon GL. Segmental dependent transport of low permeability compounds along the small intestine due to P-gp: the role of efflux transport in the oral absorption of BCS class III drugs. Mol Pharm. 2009;6(1):19–28. doi:10.1021/mp800088f.

    Article  PubMed  CAS  Google Scholar 

  23. Dahan A, Amidon GL. Grapefruit juice and its constituents augment colchicine intestinal absorption: potential hazardous interaction and the role of P-glycoprotein. Pharm Res. 2009;26(4):883–92. doi:10.1007/s11095-008-9789-7.

    Article  PubMed  CAS  Google Scholar 

  24. Dahan A, Miller JM, Hilfinger JM, Yamashita S, Yu LX, Lennernäs H, et al. High-permeability criterion for BCS classification: segmental/pH dependent permeability considerations. Mol Pharm. 2010;7(5):1827–34. doi:10.1021/mp100175a.

    Article  PubMed  CAS  Google Scholar 

  25. Mudie DM, Amidon GL, Amidon GE. Physiological parameters for oral delivery and in vitro testing. Mol Pharm. 2010;7(5):1388–405. doi:10.1021/mp100149j.

    Article  PubMed  CAS  Google Scholar 

  26. Dahan A, Amidon GL. Small intestinal efflux mediated by MRP2 and BCRP shifts sulfasalazine intestinal permeability from high to low, enabling its colonic targeting. Am J Physiol Gastrointest Liver Physiol. 2009;297(2):G371–7. doi:10.1152/ajpgi.00102.2009.

    Article  PubMed  CAS  Google Scholar 

  27. Dahan A, Sabit H, Amidon GL. Multiple efflux pumps are involved in the transepithelial transport of colchicine: combined effect of P-gp and MRP2 leads to decreased intestinal absorption throughout the entire small intestine. Drug Metab Dispos. 2009;37(10):2028–36. doi:10.1124/dmd.109.028282.

    Article  PubMed  CAS  Google Scholar 

  28. Dahan A, Amidon GL. MRP2 mediated drug–drug interaction: indomethacin increases sulfasalazine absorption in the small intestine, potentially decreasing its colonic targeting. Int J Pharm. 2010;386(1–2):216–20. doi:10.1016/j.ijpharm.2009.11.021.

    Article  PubMed  CAS  Google Scholar 

  29. Winne D. Shift of pH-absorption curves. J Pharmacokinet Biopharm. 1977;5(1):53–94.

    Article  PubMed  CAS  Google Scholar 

  30. Wagner JG, Sedman AJ. Quantitaton of rate of gastrointestinal and buccal absorption of acidic and basic drugs based on extraction theory. J Pharmacokinet Pharmacodyn. 1973;1(1):23–50.

    Article  CAS  Google Scholar 

  31. Teksin ZS, Hom K, Balakrishnan A, Polli JE. Ion pair-mediated transport of metoprolol across a three lipid-component PAMPA system. J Control Release. 2006;116(1):50–7. doi:10.1016/j.jconrel.2006.08.020.

    Article  PubMed  CAS  Google Scholar 

  32. Vree T, Muskens A, van Rossum J. Some physico-chemical properties of amphetamine and related drugs. J Pharm Pharmacol. 1969;21(11):774–5.

    Article  PubMed  CAS  Google Scholar 

  33. Kim JS, Mitchell S, Kijek P, Tsume Y, Hilfinger J, Amidon GL. The suitability of an in situ perfusion model for permeability determinations: utility for BCS class I biowaiver requests. Mol Pharm. 2006;3(6):686–94.

    Article  PubMed  CAS  Google Scholar 

  34. Polli J, Abrahamsson B, Yu L, Amidon G, Baldoni J, Cook J, et al. Summary workshop report: bioequivalence, biopharmaceutics classification system, and beyond. AAPS J. 2008;10(2):373–9. doi:10.1208/s12248-008-9040-9.

    Article  PubMed  Google Scholar 

  35. Jobin G, Cortot A, Godbillon J, Duval M, Schoeller J, Hirtz J, et al. Investigation of drug absorption from the gastrointestinal tract of man. I. Metoprolol in the stomach, duodenum and jejunum. Br J Clin Pharmacol. 1985;19 Suppl 2:97S–105S.

    Article  PubMed  CAS  Google Scholar 

  36. Masaoka Y, Tanaka Y, Kataoka M, Sakuma S, Yamashita S. Site of drug absorption after oral administration: assessment of membrane permeability and luminal concentration of drugs in each segment of gastrointestinal tract. Eur J Pharm Sci. 2006;29(3–4):240–50.

    Article  PubMed  CAS  Google Scholar 

  37. Dahan A, West BT, Amidon GL. Segmental-dependent membrane permeability along the intestine following oral drug administration: evaluation of a triple single-pass intestinal perfusion (TSPIP) approach in the rat. Eur J Pharm Sci. 2009;36(2–3):320–9. doi:10.1016/j.ejps.2008.10.013.

    Article  PubMed  CAS  Google Scholar 

  38. Li LY, Amidon GL, Kim JS, Heimbach T, Kesisoglou F, Topliss JT, et al. Intestinal metabolism promotes regional differences in apical uptake of indinavir: coupled effect of P-glycoprotein and cytochrome P450 3A on indinavir membrane permeability in rat. J Pharmacol Exp Ther. 2002;301(2):586–93. doi:10.1124/jpet.301.2.586.

    Article  PubMed  CAS  Google Scholar 

  39. Lindahl A, Sjoberg A, Bredberg U, Toreson H, Ungell A, Lennernas H. Regional intestinal absorption and biliary excretion of fluvastatin in the rat: possible involvement of mrp2. Mol Pharm. 2004;1(5):347–56.

    Article  PubMed  CAS  Google Scholar 

  40. Ungell AL, Nylander S, Bergstrand S, Sjoberg A, Lennernas H. Membrane transport of drugs in different regions of the intestinal tract of the rat. J Pharm Sci. 1998;87(3):360–6.

    Article  PubMed  CAS  Google Scholar 

  41. Pade V, Stavchansky S. Estimation of the relative contribution of the transcellular and paracellular pathway to the transport of passively absorbed drugs in the Caco-2 cell culture model. Pharm Res. 1997;14(9):1210–5. doi:10.1023/a:1012111008617.

    Article  PubMed  CAS  Google Scholar 

  42. Pade V, Stavchansky S. Link between drug absorption solubility and permeability measurements in Caco-2 cells. J Pharm Sci. 1998;87(12):1604–7. doi:10.1021/js980111k.

    Article  PubMed  CAS  Google Scholar 

  43. Palamanda J, Mei H, Morrison R, McLeod R, McCormick K, Corboz M, et al. Pharmacokinetics of pseudoephedrine in rats, dogs, monkeys and its pharmacokinetic-pharmacodynamic relationship in a feline model of nasal congestion. Drug Metab Lett. 2010;4(2):56–61.

    Article  PubMed  CAS  Google Scholar 

  44. Chen M-L, Yu L. The use of drug metabolism for prediction of intestinal permeability. Mol Pharm. 2009;6(1):74–81. doi:10.1021/mp8001864.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arik Dahan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fairstein, M., Swissa, R. & Dahan, A. Regional-Dependent Intestinal Permeability and BCS Classification: Elucidation of pH-Related Complexity in Rats Using Pseudoephedrine. AAPS J 15, 589–597 (2013). https://doi.org/10.1208/s12248-013-9462-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-013-9462-x

KEY WORDS

Navigation