1.
D. Koller, N. Friedman, Probabilistic Graphical Models: Principles and Techniques - Adaptive Computation and Machine Learning (The MIT Press, 2009)
2.
D. Yu, X. Huang, H. Wang, Y. Cui, Q. Hu, R. Zhou, ApJ
710, 869 2010
ADSCrossRef3.
A. Djebbari, J. Quackenbush, BMC Syst. Biol.
2, 57 2008
CrossRef4.
N. Friedman, M. Linial, I. Nachman, D. Pe’er, Using Bayesian networks to analyze expression data. In Proceedings of the Fourth Annual International Conference on Computational Molecular Biology, RECOMB ’00 (New York, NY, USA, 2000. ACM), p. 121
5.
D. Maxwell Chickering, Learning Bayesian networks is np-complete (1996), p. 121
6.
S. Aaronson, BQP and the polynomial hierarchy. In Proceedings of the Forty-second ACM Symposium on Theory of Computing, STOC ’10 (New York, NY, USA, 2010, ACM), p. 141
7.
L.K. Grover, A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, STOC ’96 (New York, NY, USA, 1996, ACM), p. 212
8.
R.D. Somma, D. Nagaj, M. Kieferová, Phys. Rev. Lett.
109, 050501 (2012)
ADSCrossRef9.
T.F. Rønnow, Z. Wang, J. Job, S. Boixo, S.V. Isakov, D. Wecker, J.M. Martinis, D.A. Lidar, M. Troyer, Science (2014)
10.
D. Venturelli, S. Mandrà, S. Knysh, B. O’Gorman, R. Biswas, V. Smelyanskiy, Quantum optimization of fully-connected spin glasses (2014)
11.
R.R. Tucci, An introduction to quantum Bayesian networks for mixed states (2012)
12.
R.R. Tucci, Quantum circuit for discovering from data the structure of classical Bayesian networks (2014)
13.
R. Babbush, A. Perdomo-Ortiz, B. O’Gorman, W. Macready, A. Aspuru-Guzik, Construction of Energy Functions for Lattice Heteropolymer Models: Efficient Encodings for Constraint Satisfaction Programming and Quantum Annealing (John Wiley & Sons, Inc., 2014), p. 201
14.
A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Scientific Reports 2 (2012)
15.
E.G. Rieffel, D. Venturelli, B. O’Gorman, M. Do, E. Prystay, V. Smelyanskiy, A case study in programming a quantum annealer for hard operational planning problems (submitted) (2014)
16.
A. Perdomo-Ortiz, J. Fluegemann, S. Narasimhan, V. Smelyanskiy, R. Biswas, A quantum annealing approach for fault detection and diagnosis of graph-based systems (submitted) (2014)
17.
F. Gaitan, L. Clark, Phys. Rev. A
89, 022342 (2014)
ADSCrossRef18.
R. Babbush, V. Denchev, N. Ding, S. Isakov, H. Neven, Construction of non-convex polynomial loss functions for training a binary classifier with quantum annealing (2014)
19.
V.S. Denchev, Binary Classification with Adiabatic Quantum Optimization, Ph.D. thesis, Purdue University, 2013
20.
Z. Bian, F. Chudak, W.G. Macready, L. Clark, F. Gaitan, Phys. Rev. Lett.
111, 130505 (2013)
ADSCrossRef21.
J. Cussens, Bayesian network learning by compiling to weighted MAX-SAT. In UAI (2008), p. 105
22.
S.V. Isakov, I.N. Zintchenko, T.F. Rønnow, M. Troyer, Optimized simulated annealing code for Ising spin glasses (2014)
23.
D. Heckerman, D. Geiger, D. Maxwell Chickering, Mach. Learning
20, 197 (1995)
MATH24.
T. Kadowaki, H. Nishimori, Phys. Rev. E
58, 5355 (1998)
ADSCrossRef25.
P. Ray, B.K. Chakrabarti, A. Chakrabarti, Phys. Rev. B
39, 11828 (1989)
ADSCrossRef26.
A. Das, B.K. Chakrabarti, Rev. Mod. Phys.
80, 1061 (2008)
ADSCrossRefMATHMathSciNet27.
E. Farhi, J. Goldstone, S. Gutmann, M. Sipser, Quantum computation by adiabatic evolution (2000)
28.
R. Oliveira, B.M. Terhal. Quantum Info. Comput.
8, 900 (2008)
MATHMathSciNet29.
W.M. Kaminsky, S. Lloyd. Scalable architecture for adiabatic quantum computing of np-hard problems, edited by A.J. Leggett, B. Ruggiero, P. Silvestrini, Quantum Computing and Quantum Bits in Mesoscopic Systems (Springer US, 2004), p. 229
30.
A. Perdomo, C. Truncik, I. Tubert-Brohman, G. Rose, A. Aspuru-Guzik. Phys. Rev. A
78, 012320 (2008)
ADSCrossRef31.
V. Choi, Quant. Inf. Proc.
7, 193 (2008)
CrossRefMATH32.
V. Choi, Quant. Inf. Proc.
10, 343 (2011)
CrossRefMATH33.
J. Cai, W.G. Macready, A. Roy, A practical heuristic for finding graph minors (2014)
34.
R. Babbush, B. O’Gorman, A. Aspuru-Guzik, Annal. Phys.
525, 877 (2013)
ADSCrossRefMATHMathSciNet35.
N. Friedman, M. Goldszmidt, A. Wyner, Data analysis with Bayesian networks: A bootstrap approach. In Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, UAI’99 (San Francisco, CA, USA, Morgan Kaufmann Publishers Inc, 1999), p. 196
36.
E. Boros, A. Gruber, On quadratization of pseudo-Boolean functions, CoRR, abs/1404.6538 (2014)