Skip to main content
Log in

Rigid-body molecular dynamics of DNA inside a nucleosome

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The majority of eukaryotic DNA, about three quarter, is wrapped around histone proteins forming so-called nucleosomes. To study nucleosomal DNA we introduce a coarse-grained molecular dynamics model based on sequence-dependent harmonic rigid base pair step parameters of DNA and nucleosomal binding sites. Mixed parametrization based on all-atom molecular dynamics and crystallographic data of protein-DNA structures is used for the base pair step parameters. The binding site parameters are adjusted by experimental B-factor values of the nucleosome crystal structure. The model is then used to determine the energy cost for placing a twist defect into the nucleosomal DNA which allows us to use Kramers theory to calculate nucleosome sliding caused by such defects. It is shown that the twist defect scenario together with the sequence-dependent elasticity of DNA can explain the slow time scales observed for nucleosome mobility along DNA. With this method we also show how the twist defect mechanism leads to a higher mobility of DNA in the presence of sin mutations near the dyad axis. Finally, by performing simulations on 5s rDNA, 601, and telomeric base pair sequences, it is demonstrated that the current model is a powerful tool to predict nucleosome positioning.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Schiessel, J. Phys.: Condens. Matter 15, R699 (2003)

    Article  ADS  Google Scholar 

  2. K. Luger, A.W. Mäder, S.K. Richmond, D.F. Sargent, T.J. Richmond, Nature (London) 389, 251 (1997)

    Article  ADS  Google Scholar 

  3. K. Maeshima, S. Hihara, M. Eltsov, Curr. Opin. Cell Biol. 22, 291 (2010)

    Article  Google Scholar 

  4. K.J. Polach, J. Widom, J. Mol. Biol. 254, 130 (1995)

    Article  Google Scholar 

  5. J.D. Anderson, J. Widom, J. Mol. Biol. 296, 979 (2000)

    Article  Google Scholar 

  6. J.D. Anderson, J. Widom, Mol. Cell. Biol. 21, 3830 (2001)

    Article  Google Scholar 

  7. J.D. Anderson, P.T. Lowary, J. Widom, J. Mol. Biol. 307, 977 (2001)

    Article  Google Scholar 

  8. J.D. Anderson, A. Thaström, J. Widom, Mol. Cell. Biol. 22, 7147 (2002)

    Article  Google Scholar 

  9. G. Li, M. Levitus, C. Bustamante, J. Widom, Nat. Struct. Mol. Biol. 12, 46 (2005)

    Article  Google Scholar 

  10. L. Kelbauskas, N. Chan, R. Bash, J. Yodh, N. Woodbury, D. Lohr, Biochemistry 46, 2239 (2007)

    Article  Google Scholar 

  11. A. Gansen, A. Valeri, F. Hauger, S. Felekyan, S. Kalinin, K. Toth, J. Langowski, C.A.M. Seidel, Proc. Natl. Acad. Sci. U.S.A. 106, 15308 (2009)

    Article  ADS  Google Scholar 

  12. W.J.A. Koopmans, R. Buning, T. Schmidt, J. van Noort, Biophys. J. 97, 195 (2009)

    Article  ADS  Google Scholar 

  13. P. Prinsen, H. Schiessel, Biochimie 92, 1722 (2010)

    Article  Google Scholar 

  14. S. Pennings, G. Meersseman, E.M. Bradbury, J. Mol. Biol. 220, 101 (1991)

    Article  Google Scholar 

  15. G. Meersseman, A. Pennings, E.M. Bradbury, EMBO J. 11, 2951 (1994)

    Google Scholar 

  16. S. Pennings, G. Meersseman, E.M. Bradbury, Proc. Natl. Acad. Sci. U.S.A. 91, 10275 (1994)

    Article  ADS  Google Scholar 

  17. A. Flaus, T.J. Richmond, J. Mol. Biol. 275, 427 (1998)

    Article  Google Scholar 

  18. J.M. Gottesfeld, J.M. Belitsky, C. Melander, P.B. Dervan, K. Luger, J. Mol. Biol. 321, 249 (2002)

    Article  Google Scholar 

  19. S. Pisano, E. Marchioni, A. Galati, R. Mechelli, M. Savino, S. Cacchione, J. Mol. Biol. 369, 1153 (2007)

    Article  Google Scholar 

  20. I.M. Kulic, H. Schiessel, Phys. Rev. Lett. 91, 148103 (2003)

    Article  ADS  Google Scholar 

  21. F. Mohammad-Rafiee, I.M. Kulic, H. Schiessel, J. Mol. Biol. 344, 47 (2004)

    Article  Google Scholar 

  22. H. Schiessel, Eur. Phys. J. E 19, 251 (2006)

    Article  Google Scholar 

  23. E.M. Mateescu, C. Jeppesen, P. Pincus, Europhys. Lett. 46, 493 (1999)

    Article  ADS  Google Scholar 

  24. K.K. Kunze, R.R. Netz, Phys. Rev. Lett. 85, 4389 (2000)

    Article  ADS  Google Scholar 

  25. H. Schiessel, J. Widom, R.F. Bruinsma, W.M. Gelbart, Phys. Rev. Lett. 86, 4414 (2001)

    Article  ADS  Google Scholar 

  26. I.M. Kulic, H. Schiessel, Phys. Rev. Lett. 92, 228101 (2004)

    Article  ADS  Google Scholar 

  27. A.V. Morozov, K. Fortney, D.A. Gaykalova, V.M. Studitsky, J. Widom, E.D. Siggia, Nucl. Acids Res. 37, 4707 (2009)

    Article  Google Scholar 

  28. N.B. Becker, R. Everaers, Structure 17, 579 (2009)

    Article  Google Scholar 

  29. W.K. Olson, M. Bansal, S.K. Burley, R.E. Dickerson, M. Gerstein, J. Mol. Biol. 313, 229 (2001)

    Article  Google Scholar 

  30. W.K. Olson, A. Gorin, X. Lu, L. Hock, V. Zhurkin, Proc. Natl. Acad. Sci. 95, 11163 (1998)

    Article  ADS  Google Scholar 

  31. F. Lankas, P. Sponer, J. Langowski, T.E. Cheatham, Biophys. J. 85, 2872 (2003)

    Article  ADS  Google Scholar 

  32. R. Lavery, K. Zakrzewska, D. Beveridge, T.C. Bishop, D.A. Case, T. Cheatham, S. Dixit, B. Jayaram, F. Lankas, C. Laughton et al., Nucleic Acids Res. 38, 299 (2010)

    Article  Google Scholar 

  33. N. Becker, L. Wolff, R. Everaers, Nucleic Acid Res. 34, 5638 (2006)

    Article  Google Scholar 

  34. C.A. Davey, D.F. Sargent, K. Luger, A.W. Maeder, T.J. Richmond, J. Mol. Biol. 319, 1097 (2002)

    Article  Google Scholar 

  35. H. Kamberaj, R.J. Low, M.P. Neal, J. Chem. Phys. 122, 1906216 (2005)

    Article  Google Scholar 

  36. B. Mergell, M.R. Ejtehadi, R. Everaers, Phys. Rev. E 68, 021911 (2003)

    Article  ADS  Google Scholar 

  37. M. Biswas, J. Langowski, T.C. Bishop, WIREs Comput. Mol. Sci. (2013)

  38. M.A. Hall, A. Shundrovsky, L. Bai, R.M. Fulbright, J.T. Lis, M.D. Wang, Nature Struc. Mol. Biol. 16, 124 (2009)

    Article  Google Scholar 

  39. B.D. Brower-Toland, C.L. Smith, R.C. Yeh, J.T. Lis, C.L. Peterson, M.D. Wang, Proc. Natl. Acad. Sci. 99, 1960 (2002)

    Article  ADS  Google Scholar 

  40. A. Flaus, C. Rencurel, H. Ferreira, N. Wiechens, T. Owen-Hughes, EMBO J. 23, 343 (2004)

    Article  Google Scholar 

  41. P.T. Lowary, J. Widom, J. Mol. Biol. 276, 19 (1998)

    Article  Google Scholar 

  42. S. Cacchione, M.A. Cerone, M. Savino, FEBS Lett. 400, 37 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fathizadeh, A., Berdy Besya, A., Reza Ejtehadi, M. et al. Rigid-body molecular dynamics of DNA inside a nucleosome. Eur. Phys. J. E 36, 21 (2013). https://doi.org/10.1140/epje/i2013-13021-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2013-13021-4

Keywords

Navigation