Skip to main content
Log in

Nuclear physics with a medium-energy Electron-Ion Collider

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

A polarized ep/eA collider (Electron-Ion Collider, or EIC) with variable center-of-mass energy √s ∼ 20–70 GeV and luminosity ∼1034 cm−2 s−1 would be uniquely suited to address several outstanding questions of Quantum Chromodynamics (QCD) and the microscopic structure of hadrons and nuclei: i) the three-dimensional structure of the nucleon in QCD (sea quark and gluon spatial distributions, orbital motion, polarization, correlations); ii) the fundamental color fields in nuclei (nuclear parton densities, shadowing, coherence effects, color transparency); iii) the conversion of color charge to hadrons (fragmentation, parton propagation through matter, in-medium jets). We briefly review the conceptual aspects of these questions and the measurements that would address them, emphasizing the qualitatively new information that could be obtained with the collider. Such a medium-energy EIC could be realized at Jefferson Lab after the 12GeV Upgrade (MEIC), or at Brookhaven National Lab as the low-energy stage of eRHIC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U.S. Department of Energy Office of Science Nuclear Science Advisory Committee’s December 2007 Long Range Plan The Frontiers of Nuclear Science available at: http://science.energy.gov/np/nsac.

  2. Report on the Joint BNL/INT/JLab Program Gluons and the quark sea at high energies: Distributions, polarization, tomography, Institute for Nuclear Theory, Seattle, WA, September 13 -- November 19, 2010, edited by D. Boer, M. Diehl, R. Milner, R. Venugopalan, W. Vogelsang, arXiv:1108.1713 [nucl-th], see also presentations and materials at: http://www.int.washington.edu/PROGRAMS/10-3.

  3. L.W. Whitlow, E.M. Riordan, S. Dasu, S. Rock, A. Bodek, Phys. Lett. B 282, 475 (1992) and references therein.

    Article  ADS  Google Scholar 

  4. D. Higinbotham, W. Melnitchouk, A.W. Thomas, J. Phys.: Conf. Ser. 299, 011001 (2011).

    Article  Google Scholar 

  5. Conceptual Design Report (CDR) for the Science and Experimental Equipment for the 12 GeV Upgrade of CEBAF (Prepared for the DOE Science Review, April 6--8, 2005), edited by J. Arrington (Jefferson Lab, 2005) available at: http://www.jlab.org/div_dept/physics_division/GeV/doe_review/CDR_for_Science_Review.pdf.

  6. M. Klein, R. Yoshida, Prog. Part. Nucl. Phys. 61, 343 (2008).

    Article  ADS  Google Scholar 

  7. H. Abramowicz, A. Caldwell, Rev. Mod. Phys. 71, 1275 (1999).

    Article  ADS  Google Scholar 

  8. M. Burkardt, A. Miller, W.D. Nowak, Rep. Prog. Phys. 73, 016201 (2010).

    Article  ADS  Google Scholar 

  9. S.E. Kuhn, J.-P. Chen, E. Leader, Prog. Part. Nucl. Phys. 63, 1 (2009).

    Article  ADS  Google Scholar 

  10. V. Barone, F. Bradamante, A. Martin, Prog. Part. Nucl. Phys. 65, 267 (2000).

    Article  ADS  Google Scholar 

  11. G. Bunce, N. Saito, J. Soffer, W. Vogelsang, Ann. Rev. Nucl. Part. Sci. 50, 525 (2000).

    Article  ADS  Google Scholar 

  12. In the interest of a concise summary we refer here mostly to review articles of the individual physics topics. References to original results and further information on the individual topics can be found in the cited literature.

  13. For information and updates on Lattice QCD, see resources at: http://www.usqcd.org/.

  14. S. Kumano, Phys. Rep. 303, 183 (1998).

    Article  ADS  Google Scholar 

  15. G.T. Garvey, J.-C. Peng, Prog. Part. Nucl. Phys. 47, 203 (2001).

    Article  ADS  Google Scholar 

  16. S.J. Brodsky, arXiv:1202.5338 [hep-ph].

  17. HERMES Collaboration (A. Airapetian et al.), Phys. Lett. B 666, 446 (2008).

    Article  ADS  Google Scholar 

  18. D. de Florian, R. Sassot, M. Stratmann, W. Vogelsang, Prog. Part. Nucl. Phys. 67, 251 (2012).

    Article  ADS  Google Scholar 

  19. M. Diehl, Phys. Rep. 388, 41 (2003).

    Article  ADS  Google Scholar 

  20. A.V. Belitsky, A.V. Radyushkin, Phys. Rep. 418, 1 (2005).

    Article  ADS  Google Scholar 

  21. S. Boffi, B. Pasquini, Riv. Nuovo Cimento 30, 387 (2007).

    Google Scholar 

  22. L. Frankfurt, M. Strikman, C. Weiss, Ann. Rev. Nucl. Part. Sci. 55, 403 (2005).

    Article  ADS  Google Scholar 

  23. M. Anselmino et al., Eur. Phys. J. A 47, 35 (2011).

    Article  ADS  Google Scholar 

  24. U. D’Alesio, F. Murgia, Prog. Part. Nucl. Phys. 61, 394 (2008).

    Article  ADS  Google Scholar 

  25. G. Piller, W. Weise, Phys. Rep. 330, 1 (2000).

    Article  ADS  Google Scholar 

  26. N. Armesto, J. Phys. G 32, R367 (2006).

    Article  Google Scholar 

  27. L. Frankfurt, V. Guzey, M. Strikman, Phys. Rep. 512, 255 (2012).

    Article  ADS  Google Scholar 

  28. F. Gelis, E. Iancu, J. Jalilian-Marian, R. Venugopalan, Ann. Rev. Nucl. Part. Sci. 60, 463 (2010).

    Article  ADS  Google Scholar 

  29. P.R. Norton, Rep. Prog. Phys. 66, 1253 (2003).

    Article  ADS  Google Scholar 

  30. D.F. Geesaman, K. Saito, A.W. Thomas, Ann. Rev. Nucl. Part. Sci. 45, 337 (1995).

    Article  ADS  Google Scholar 

  31. E665 Collaboration (M.R. Adams et al.), Phys. Rev. Lett. 74, 1525 (1995).

    Article  ADS  Google Scholar 

  32. HERMES Collaboration (K. Ackerstaff et al.), Phys. Rev. Lett. 82, 3025 (1999).

    Article  ADS  Google Scholar 

  33. HERMES Collaboration (A. Airapetian et al.), Phys. Rev. Lett. 90, 052501 (2003).

    Article  ADS  Google Scholar 

  34. A. Accardi, F. Arleo, W.K. Brooks, D. D’Enterria, V. Muccifora, Riv. Nuovo Cimento 32, 439 (2010).

    Google Scholar 

  35. PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. Lett. 96, 032301 (2006).

    Article  ADS  Google Scholar 

  36. STAR Collaboration (B.I. Abelev et al.), Phys. Rev. Lett. 98, 192301 (2007) 106.

    Article  ADS  Google Scholar 

  37. PHENIX Collaboration (A. Adare et al.), Phys. Rev. Lett. 98, 172301 (2007).

    Article  ADS  Google Scholar 

  38. For further information and updates on the EIC machine designs, see: https://eic.jlab.org/wiki/ (JLab) and https://wiki.bnl.gov/eic/ (BNL).

  39. For a summary of the projected luminosity of the different EIC designs as of August 2010, see: https://eic.jlab.org/wiki/index.php/Machine_designs.

  40. For information and updates on the LHeC project, see: http://www.ep.ph.bham.ac.uk/exp/LHeC/.

  41. A. Lehrach et al., J. Phys. Conf. Ser. 295, 012156 (2011) for a recent summary of the ENC project.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Accardi.

Additional information

Communicated by M. Anselmino

Rights and permissions

Reprints and permissions

About this article

Cite this article

Accardi, A., Guzey, V., Prokudin, A. et al. Nuclear physics with a medium-energy Electron-Ion Collider. Eur. Phys. J. A 48, 92 (2012). https://doi.org/10.1140/epja/i2012-12092-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2012-12092-7

Keywords

Navigation