Skip to main content
Log in

Experimental investigation and ab initio calculation of the properties of Sc-, in-doped bismuth titanates with the pyrochlore type structure

  • Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Using ab initio calculations, the data have been obtained on the structural, electronic, and optical properties of bismuth titanates with the pyrochlore type structure and compounds with the substitution of scandium or indium atoms for bismuth and titanium atoms. The results of the theoretical calculations agree with the experimentally obtained structural and optical characteristics of the synthesized compounds doped with scandium or indium. It has been shown that the substitution of scandium or indium atoms for bismuth atoms in the pyrochlore structure is energetically favorable. The energies corresponding to the direct and indirect electronic transitions in scandium- and indium-doped bismuth titanates have been determined based on the optical spectroscopy data obtained for the studied samples. These energies are in agreement with the theoretically calculated values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Esquivel-Elizondo, B. B. Hinojosa, and J. C. Nino, Chem. Mater. 23 (22), 4965 (2011).

    Article  Google Scholar 

  2. Ch. H. Yang, H. T. Wu, and D. M. Yang, Mater. Lett. 61 (19–20), 4166 (2007).

    Article  Google Scholar 

  3. G. W. Hwang, W. D. Kim, Y. S. Min, Y. J. Cho, and C. S. Hwang, J. Electrochem. Soc. 153, 20 (2006).

    Article  Google Scholar 

  4. A. Hardy, S. Van Elshocht, C. De Dobbelaere, J. Hadermann, G. Pourtois, S. De Gendt, V. V. Afanas’ev, and M. K. Van Bael, Mater. Res. Bull. 47 (3), 511 2012.

    Article  Google Scholar 

  5. I. V. Piir, M. S. Koroleva, Y. I. Ryabkov, D. A. Korolev, N. V. Chezhina, V. G. Semenov, and V. V. Panchuk, J. Solid State Chem. 204, 245 (2013).

    Article  ADS  Google Scholar 

  6. I. V. Piir, M. S. Koroleva, Y. I. Ryabkov, E. Yu. Pikalova, S. V. Nekipelov, V. N. Sivkov, and D. V. Vyalikh, Solid State Ionics 262, 630 (2014).

    Article  Google Scholar 

  7. J. Hou, Sh. Jiao, H. Zhu, and R. V. Kumar, J. Solid State Chem. 184, 154 (2011).

    Article  ADS  Google Scholar 

  8. W. F. Yao, H. Wang, X. H. Xu, J. T. Zhou, X. N. Wang, Y. Zhang, and S. X. Shang, Appl. Catal., A 259, 29 (2004).

    Article  Google Scholar 

  9. L. Z. Pei, H. D. Liu, N. Lin, and H. Y. Yu, J. Alloys Compd. 622, 254 (2015).

    Article  Google Scholar 

  10. S. Murugesan, and V. R. Subramanian, Chem. Commun. (Cambridge) 34, 5109 (2009).

    Article  Google Scholar 

  11. M. A. Subramanian, G. Aravamudan, and G. V. S. Rao, Prog. Solid State Chem. 15, 55 (1983).

    Article  Google Scholar 

  12. R. A. McCauley, J. Appl. Phys. 51, 290 (1980).

    Article  ADS  Google Scholar 

  13. R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751 (1976).

    Article  ADS  Google Scholar 

  14. I. Radosavljevic, J. S. O. Evans, and A. W. Sleight, J. Solid State Chem. 136, 63 (1998)

    Article  ADS  Google Scholar 

  15. A. L. Hector and S. B. Wiggin, J. Solid State Chem. 177 (1), 139 (2004).

    Article  ADS  Google Scholar 

  16. B. B. Hinojosa, J. C. Nino, and A. Asthagiri, Phys. Rev. B: Condens. Matter 77 (10), 104123 (2008).

    Article  ADS  Google Scholar 

  17. O. Merka, D. W. Bahnemann, and M. Wark, Catal. Today 225, 102 (2014).

    Article  Google Scholar 

  18. I. V. Piir, N. A. Sekushin, V. E. Grass, Y. I. Ryabkov, N. V. Chezhina, S. V. Nekipelov, V. N. Sivkov, and D. V. Vyalikh, Solid State Ionics 225, 464 (2012).

    Article  Google Scholar 

  19. M. S. Koroleva, I. V. Piir, Yu. I. Ryabkov, D. A. Korolev, and N. V. Chezhina, Izv. Akad. Nauk, Ser. Khim., No. 2, 410 (2013).

    Google Scholar 

  20. I. V. Piir, M. S. Koroleva, N. A. Sekushin, V. E. Grass, and Yu. I. Ryabkov, Russ. J. Electrochem. 49 (8), 817 (2013).

    Article  Google Scholar 

  21. M. M. Piskaikina, I. V. Piir, M. S. Koroleva, and V. A. Belyi, Izv. Komi Nauchn. Tsentra UrO Ross. Akad. Nauk. 21, 22 (2015).

    Google Scholar 

  22. S. Kunej and D. Suvorov, J. Am. Ceram. Soc. 91, 3472 (2008).

    Article  Google Scholar 

  23. S. Kunej and D. Suvorov, J. Am. Ceram. Soc. 92, 959 (2009).

    Article  Google Scholar 

  24. S. Kunej, S. D. Scapin, and D. Suvorov, J. Am. Ceram. Soc. 92, 2373 (2009).

    Article  Google Scholar 

  25. S. Kunej, S. D. Scapin, and D. Suvorov, J. Am. Ceram. Soc. 95, 1201 (2012).

    Article  Google Scholar 

  26. R. Seshadri, Solid State Sci. 8, 259 (2006).

    Article  ADS  Google Scholar 

  27. C. J. Fennie, R. Seshadri, and K. M. Rabe, arXiv:0712. 1846 (2007).

    Google Scholar 

  28. W. Wei, Y. Dai, and B. Huang, J. Phys. Chem. C 113, 5658 (2009).

    Article  Google Scholar 

  29. S. Murugesan, M. N. Huda, Y. Yan, M. M. A. Jassim, and V. Subramanian, J. Phys. Chem. C 114, 10598 (2010).

    Article  Google Scholar 

  30. C. H. Patterson, Phys. Rev. B: Condens. Matter. 82 (15), 155103 (2010).

    Article  ADS  Google Scholar 

  31. D. P. Shoemaker, R. Seshadri, M. Tachibana, and A. L. Hector, Phys. Rev. B: Condens. Matter 84 (6), 064117 (2011).

    Article  ADS  Google Scholar 

  32. Q. Fu, T. He, J. L. Li, and G. W. Yang, J. Appl. Phys. 111, 124306 (2012).

    Article  ADS  Google Scholar 

  33. C. L. Mayfield and M. N. Huda, J. Cryst. Growth 444, 46 (2016).

    Article  ADS  Google Scholar 

  34. A. G. Krasnov, M. M. Piskaikina, and I. V. Piir, Russ. J. Gen. Chem. 86 (2), 205 (2016).

    Article  Google Scholar 

  35. A. G. Krasnov, M. M. Piskaikina, and I. V. Piir, Chemistry for Sustainable Development 24, 687 (2016).

    Google Scholar 

  36. J. Rodriguez-Carvajal, Phys. B (Amsterdam, Neth.) 192, 55 (1993).

    Article  ADS  Google Scholar 

  37. GOST (State Standard) 2211-65: Refractories and Refractory Raw Materials. Methods for Determination of the Density. Permission 30.06.1996 (Izd. Standartov, Moscow, 1994) [in Russian].

  38. G. Kresse and J. Furthmüller, Phys. Rev. B: Condens. Matter 54 (16), 11169 (1996).

    Article  ADS  Google Scholar 

  39. G. Kresse and D. Joubert, Phys. Rev. B: Condens. Matter 59 (3), 1758 (1999).

    Article  ADS  Google Scholar 

  40. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77 (18), 3865 (1996).

    Article  ADS  Google Scholar 

  41. A. Slassi, Mater. Sci. Semicond. Process. 32, 100 (2015).

    Article  Google Scholar 

  42. Z. Bian, Y. Huo, Y. Zhang, J. Zhu, Y. Lu, and H. Li, Appl. Catal., B 91, 247 (2009).

    Article  Google Scholar 

  43. B. Allureda, S. Dela Cruz, T. Darlinga, M. N. Hudac, and V. Subramanian, Appl. Catal., B 144, 261 (2014).

    Article  Google Scholar 

  44. S. Gupta, L. De Leon, and V. R. Subramanian, Phys. Chem. Chem. Phys. 16, 12719 (2014).

    Article  Google Scholar 

  45. A. McInnes, J. S. Sagu, and K. G. U. Wijayantha, Mater. Lett. 137, 214 (2014).

    Article  Google Scholar 

  46. M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, Phys. Rev. B: Condens. Matter 73 (4), 045112 (2006).

    Article  ADS  Google Scholar 

  47. M. D. Scafetta, A. M. Cordi, J. M. Rondinelli, and S. J. May, J. Phys.: Condens. Matter 26, 505502 (2014).

    Google Scholar 

  48. M. J. Pinzon, J. E. Alfonso, and J. J. Olaya, Thin Solid Films 549, 8 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Krasnov.

Additional information

Original Russian Text © A.G. Krasnov, I.R. Shein, I.V. Piir, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 3, pp. 483–490.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasnov, A.G., Shein, I.R. & Piir, I.V. Experimental investigation and ab initio calculation of the properties of Sc-, in-doped bismuth titanates with the pyrochlore type structure. Phys. Solid State 59, 495–503 (2017). https://doi.org/10.1134/S1063783417030192

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417030192

Navigation