Skip to main content
Log in

Fatigue processes in triglycine sulfate and the effect of a magnetic field on them

  • Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

For the first time, fatigue processes in triglycine sulfate crystals were studied using a combination of electrical and scanning probe microscopy methods. Long-term (>100 h) influence of a sinusoidal field with a frequency of 50 Hz and an amplitude of 1 kV/cm lead to a sharp decrease of the permittivity in the phase transition region and degradations of P–E hysteresis loops (a decrease of spontaneous polarization, an increase of coercive and bias fields). Changes in dielectric properties were accompanied by an increase of the defect nanoclusters density and broadening their size distribution spectrum on the (010) cleavage surface. A subsequent exposure of “fatigued” crystals in the static magnetic field of 2 T for 20 min led to hysteresis loop symmetrization, which indicates a magnetoinduced transformation in the structure of defects responsible for fatigue effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. J. Lou, J. Appl. Phys. 105, 024101 (2009).

    Article  ADS  Google Scholar 

  2. U. Robels, J. H. Calderwood, and G. Arlt, J. Appl. Phys. 77, 4002 (1995).

    Article  ADS  Google Scholar 

  3. P. K. Larsen, G. J. M. Dormans, D. J. Taylor, and P. J. van Veldhoven, J. Appl. Phys. 76, 2405 (1994).

    Article  ADS  Google Scholar 

  4. A. K. Tagantsev, I. Stolichnov, E. L. Colla, and N. Setter, J. Appl. Phys. 90, 1387 (2001).

    Article  ADS  Google Scholar 

  5. V. V. Lemanov and V. K. Yarmarkin, Phys. Solid State 38 (8), 1363 (1996).

    ADS  Google Scholar 

  6. A. S. Sidorkin, L. P. Nesterenko, A. L. Smirnov, G. L. Smirnov, S. V. Ryabtsov, and A. A. Sidorkin, Phys. Solid State 50 (11), 2157 (2008).

    Article  ADS  Google Scholar 

  7. A. S. Sidorkin, L. P. Nesterenko, and A. Yu. Pakhomov, Phys. Solid State 54 (5), 1008 (2012).

    Article  ADS  Google Scholar 

  8. E. Fatuzzo, J. Appl. Phys. 33, 2588 (1962).

    Article  ADS  Google Scholar 

  9. B. N. Prasolov and I. A. Safonova, Izv. Akad. Nauk, Ser. Fiz. 59, 9 (1995).

    Google Scholar 

  10. N. V. Belugina, R. V. Gainutdinov, A. L. Tolstikhina, V. V. Dolbinina, N. I. Sorokina, and O. A. Alekseeva, Crystallogr. Rep. 56 (6), 1070 (2011).

    Article  ADS  Google Scholar 

  11. V. I. Alshits, E. V. Darinskaya, M. V. Koldaeva, and E. A. Petrzhik, Crystallogr. Rep. 48 (5), 768 (2003).

    Article  ADS  Google Scholar 

  12. Yu. I. Golovin, Phys. Solid State 46 (5), 789 (2004).

    Article  ADS  Google Scholar 

  13. R. B. Morgunov, Phys.—Usp. 47 (2), 125 (2004).

    Article  ADS  Google Scholar 

  14. V. I. Alshits, E. V. Darinskaya, M. V. Koldaeva, and E. A. Petrzhik, in Dislocations in Solids, Ed. by J. P. Hirth (Elsevier, Amsterdam, 2008), Vol. 14, pp. 333–437.

    Article  Google Scholar 

  15. M. N. Levin, V. V. Postnikov, and M. Yu. Palagin, Phys. Solid State 45 (9), 1763 (2003)

    Article  ADS  Google Scholar 

  16. M. N. Levin, V. V. Postnikov, and M. Yu. Palagin, Tech. Phys. Lett. 29 (6), 513 (2003)

    Article  ADS  Google Scholar 

  17. M. N. Levin, V. V. Postnikov, M. Yu. Palagin, and A. M. Kostsov, Phys. Solid State 45 (3), 542 (2003).

    Article  ADS  Google Scholar 

  18. S. A. Flerova and O. E. Bochkov, JETP Lett. 33 (1), 34 (1981).

    ADS  Google Scholar 

  19. O. L. Orlov, S. A. Popov, S. A. Flerova, and I. L. Tsinman, Sov. Tech. Phys. Lett. 14 (1), 52 (1988).

    Google Scholar 

  20. C. Lashley, M. F. Hundley, B. Mihaila, J. L. Smith, C. P. Opeil, T. R. Finlayson, R. A. Fisher, and N. Hur, Appl. Phys. Lett. 90, 052910 (2007).

    Article  ADS  Google Scholar 

  21. S. A. Gridnev, K. S. Drozhdin, and V. V. Shmykov, Phys. Solid State 42 (2), 326 (2000).

    Article  ADS  Google Scholar 

  22. E. A. Petrzhik, E. S. Ivanova, and V. I. Al’shits, Bull. Russ. Acad. Sci.: Phys. 78 (10), 1052 (2014).

    Article  Google Scholar 

  23. E. D. Yakushkin, JETP Lett. 99 (7), 415 (2014).

    Article  ADS  Google Scholar 

  24. E. S. Ivanova, I. D. Rumyantsev, and E. A. Petrzhik, Phys. Solid State 58 (1), 127 (2016).

    Article  ADS  Google Scholar 

  25. V. V. Gladkii, V. A. Kirikov, S. V. Nekhlyudov, and E. S. Ivanova, Phys. Solid State 39 (11), 1829 (1997).

    Article  ADS  Google Scholar 

  26. S. R. Fletcher, E. T. Keve, and A. C. Skapski, Ferroelectrics 14, 775 (1976).

    Article  Google Scholar 

  27. X. Solans, M. Font-Altaba, F. Franko, and J. Fernandez-Ferrer, Ferroelectrics 59, 241 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Ivanova.

Additional information

Original Russian Text © E.S. Ivanova, E.A. Petrzhik, R.V. Gainutdinov, A.K. Lashkova, T.R. Volk, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 3, pp. 550–555.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, E.S., Petrzhik, E.A., Gainutdinov, R.V. et al. Fatigue processes in triglycine sulfate and the effect of a magnetic field on them. Phys. Solid State 59, 569–574 (2017). https://doi.org/10.1134/S1063783417030155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417030155

Navigation