Skip to main content
Log in

Effect of photoions on the line shape of the Förster resonance lines and microwave transitions in cold rubidium Rydberg atoms

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Experiments are carried out on the spectroscopy of the Förster resonance lines Rb(37P) + Rb(37P) → Rb(37S) + Rb(38S) and microwave transitions nPnS, nD between Rydberg states of cold rubidium atoms in a magneto-optical trap (MOT). Under ordinary conditions, all spectra exhibit a linewidth of 2–3 MHz irrespective of the interaction time between atoms or between atoms and microwave radiation, although the limit resonance width should be determined by the inverse interaction time. The analysis of experimental conditions has shown that the main source of line broadening is the inhomogeneous electric field of cold photoions that are generated under the excitation of initial nP Rydberg states by broadband pulsed laser radiation. The application of an additional electric-field pulse that rapidly extracts photoions produced by a laser pulse leads to a considerable narrowing of lines of microwave resonances and the Förster resonance. Various sources of line broadening in cold Rydberg atoms are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rydberg States of Atoms and Molecules, Ed. by R. F. Stebbings and F. B. Dunning (Cambridge University Press, Cambridge, 1983); T. F. Gallagher, Rydberg Atoms (Cambridge University Press, Cambridge, 1994).

    Google Scholar 

  2. W. Li, I. Mourachko, M. W. Noel, and T. F. Gallagher, Phys. Rev. A: At., Mol., Opt. Phys. 67, 052502 (2003).

    Article  ADS  Google Scholar 

  3. J. Han, Y. Jamil, D. V. L. Norum, P. J. Tanner, and T. F. Gallagher, Phys. Rev. A: At., Mol., Opt. Phys. 74, 054502 (2006).

    Article  ADS  Google Scholar 

  4. K. Afrousheh, P. Bohlouli-Zanjani, J. D. Carter, A. Mugford, and J. D. D. Martin, Phys. Rev. A: At., Mol., Opt. Phys. 73, 063403 (2006).

    Article  ADS  Google Scholar 

  5. I. I. Ryabtsev, D. B. Tretyakov, and I. I. Beterov, J. Phys. B: At., Mol. Opt. Phys. 38, S421 (2005).

    Article  ADS  Google Scholar 

  6. M. Saffman, T. G. Walker, and K. Molmer, Rev. Mod. Phys. 82, 2313 (2010).

    Article  ADS  Google Scholar 

  7. I. I. Beterov, I. I. Ryabtsev, D. B. Tretyakov, and V. M. Entin, Phys. Rev. A: At., Mol., Opt. Phys. 79, 052504 (2009).

    Article  ADS  Google Scholar 

  8. D. B. Branden, T. Juhasz, T. Mahlokozera, C. Vesa, R. O. Wilson, M. Zheng, A. Kortyna, and D. A. Tate, J. Phys. B: At., Mol. Opt. Phys. 43, 015002 (2010).

    Article  ADS  Google Scholar 

  9. D. B. Tretyakov, I. I. Beterov, V. M. Entin, I. I. Ryabtsev, and P. L. Chapovsky, JETP 108(3), 374 (2009).

    Article  ADS  Google Scholar 

  10. M. P. Robinson, B. Laburthe Tolra, M. W. Noel, T. F. Gallagher, and P. Pillet, Phys. Rev. Lett. 85, 4466 (2000).

    Article  ADS  Google Scholar 

  11. T. Killian, T. Pattard, T. Pohl, and J. Rost, Phys. Rep. 449, 77 (2007); S. L. Rolston, Physics 1, 2 (2008).

    Article  ADS  Google Scholar 

  12. H. Park, R. Ali, and T. F. Gallagher, Phys. Rev. A: At., Mol., Opt. Phys. 82, 023421 (2010).

    Article  ADS  Google Scholar 

  13. I. I. Ryabtsev, D. B. Tretyakov, I. I. Beterov, and V. M. Entin, Phys. Rev. A: At., Mol., Opt. Phys. 76, 012722, 049902(E) (2007).

    Article  ADS  Google Scholar 

  14. I. I. Ryabtsev, D. B. Tretyakov, I. I. Beterov, and V. M. Entin, Phys. Rev. Lett. 104, 073003 (2010).

    Article  ADS  Google Scholar 

  15. I. I. Ryabtsev, D. B. Tretyakov, I. I. Beterov, V. M. Entin, and E. A. Yakshina, Phys. Rev. A: At., Mol., Opt. Phys. 82, 053409 (2010).

    Article  ADS  Google Scholar 

  16. I. I. Ryabtsev and I. M. Beterov, Phys. Rev. A: At., Mol., Opt. Phys. 61, 063414 (2000).

    Article  ADS  Google Scholar 

  17. S. Dyubko, M. Efimenko, V. Efremov, and S. Podnos, Phys. Rev. A: At., Mol., Opt. Phys. 52, 514 (1995).

    Article  ADS  Google Scholar 

  18. I. I. Beterov, D. B. Tretyakov, I. I. Ryabtsev, V. M. Entin, A. Ekers, and N. N. Bezuglov, New J. Phys. 11, 013052 (2009).

    Article  ADS  Google Scholar 

  19. T. Amthor, J. Denskat, C. Giese, N. N. Bezuglov, A. Ekers, L. S. Cederbaum, and M. Weidemüller, Eur. Phys. J. D 53, 329 (2009).

    Article  ADS  Google Scholar 

  20. M. Viteau, J. Radogostowicz, A. Chotia, M. G. Bason, N. Malossi, F. Fuso, D. Ciampini, O. Morsch, I. I. Ryabtsev, and E. Arimondo, J. Phys. B 43, 155301 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Ryabtsev.

Additional information

Original Russian Text © D.B. Tretyakov, I.I. Beterov, V.M. Entin, E.A. Yakshina, I.I. Ryabtsev, S.F. Dyubko, E.A. Alekseev, N.L. Pogrebnyak, N.N. Bezuglov, E. Arimondo, 2012, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2012, Vol. 141, No. 1, pp. 18–30.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tretyakov, D.B., Beterov, I.I., Entin, V.M. et al. Effect of photoions on the line shape of the Förster resonance lines and microwave transitions in cold rubidium Rydberg atoms. J. Exp. Theor. Phys. 114, 14–24 (2012). https://doi.org/10.1134/S1063776111160102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776111160102

Keywords

Navigation