Skip to main content
Log in

Kinetic scheme and rate constants for methyl methacrylate synthesis occurring via the radical–coordination mechanism

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Two kinetic schemes of the bulk radical–coordination polymerization of methyl methacrylate initiated by the benzoyl peroxide–ferrocene system are considered from the standpoint of formal kinetics. The most likely kinetic scheme is the one that includes the reactions characteristic of classical radical polymerization and, additionally, reactions of controlled radical polymerization proceeding via the Organometallic Mediated Radical Polymerization mechanism, a reaction generating a coordination active site, and a chain propagation reaction in the coordination sphere of the metal. The temperature dependences of the rate constants for the reactions of this kinetic scheme at temperatures typical of commercial poly(methyl methacrylate) production (313–353 K) have been determined by solving the inverse kinetic problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Korolev, G.V. and Marchenko, A.P., Russ. Chem. Rev., 2000, vol. 69, no. 5, p. 409.

    Article  CAS  Google Scholar 

  2. Grishin, I.D., Chizhevsky, I.T., and Grishin, D.F., Kinet. Catal., 2009, vol. 50, no. 4, p. 550.

    Article  CAS  Google Scholar 

  3. Chernikova, E.V., Terpugova, P.S., Garina, E.S., and Golubev, V.B., Polym. Sci., Ser. A, 2007, vol. 49, no. 2, p. 108.

    Article  Google Scholar 

  4. Ulitin, N.V., Shirokikh, E.B., Nasyrov, I.I., Kalinina, D.Sh., Sidel’nikova, V.A., Samarin, E.V., and Deberdeev, R.Ya., Kinet. Catal., 2014, vol. 55, no. 2, p. 154.

    Article  CAS  Google Scholar 

  5. Controlled/“Living” Radical Polymerization: Progress in ATRP, Matyjaszewski, K., Ed., Washington, DC: Am. Chem. Soc., 2009.

  6. Controlled/“Living” Radical Polymerization: Progress in RAFT, DT, NMP and OMRP, Matyjaszewski, K., Ed., Washington, DC: Am. Chem. Soc., 2009.

  7. Handbook of RAFT Polymerization, Barner-Kowollik, C., Ed., Weinheim, Germany: Wiley–VCH, 2008.

  8. Puzin, Yu.I., Yumagulova, R.Kh., Kraikin, V.A., Ionova, I.A., and Prochukhan, Yu.A., Polym. Sci., Ser. B, 2000, vol. 42, nos. 3–4, p. 90.

    Google Scholar 

  9. Sigaeva, N.N., Frizen, A.K., Nasibullin, I.I., Ermolaev, N.L., and Kolesov, S.V., Kinet. Catal., 2012, vol. 53, no. 4, p. 470.

    Article  CAS  Google Scholar 

  10. Sigaeva, N.N., Yumagulova, R.Kh., Frizen, A.K., and Kolesov, S.V., Polym. Sci., Ser. B, 2009, vol 51, nos. 7–8, p. 226.

    Article  Google Scholar 

  11. Sigaeva, N.N., Yumagulova, R.Kh., Nasretdinova, R.N., Frizen, A.K., and Kolesov, S.V., Kinet. Catal., 2009, vol. 50, no. 2, p. 168.

    Article  CAS  Google Scholar 

  12. Kolesov, S.V., Nasibullin, I.I., Frizen, A.K., Sigaeva, N.N., and Galkin, E.G., Polym. Sci., Ser. B, 2015, vol. 57, no. 2, p. 71.

    Article  CAS  Google Scholar 

  13. Murinov, Y.I., Grabovskiy, S.A., Islamova, R.M., Kuramshina, A.R., and Kabal’nova, N.N., Mendeleev Commun., 2013, vol. 23, p. 53.

    Article  CAS  Google Scholar 

  14. Grognes, E.L., Claverie, J., and Poli, R., J. Am. Chem. Soc., 2001, vol. 123, p. 9513.

    Article  Google Scholar 

  15. Ochedzan-Siodlak, W. and Nowakowska, M., Eur. Polym. J., 2005, vol. 41, p. 941.

    Article  CAS  Google Scholar 

  16. Wilson, P.A., Hannant, M.H., Wright, J.A., Cannon, R.D., and Bochmann, M., Macromol. Symp., 2006, vol. 236, p. 100.

    Article  CAS  Google Scholar 

  17. Resconi, L., Cavallo, L., Fait, A., and Piemontesi, F., Chem. Rev., 2000, vol. 100, no. 4, p. 1253.

    Article  CAS  Google Scholar 

  18. Filho, A.P.O., Souza, J.L., and Schuchardt, U., Stud. Surf. Sci. Catal., 2000, vol. 130, p. 329.

    Article  Google Scholar 

  19. Sigaeva, N.N., Frizen, A.K., Nasibullin, I.I., Ermolaev, N.L., and Kolesov, S.V., Polym. Sci., Ser. B, 2012, vol. 54, p. 197.

    Article  CAS  Google Scholar 

  20. Frizen, A.K., Khursan, S.L., Kolesov, S.V., and Monakov, Yu.B., Russ. J. Phys. Chem. B, 2011, vol. 5, no. 1, p. 131.

    Article  Google Scholar 

  21. Bagdasar’yan Kh.S., Theory of Free-Radical Polymerization, Jerusalem: Israel Program for Scientific Translations, 1968.

    Google Scholar 

  22. Brandrup, J., Immergut, E.H., and Grulke, E.A., Polymer Handbook, New York: Wiley, 1999.

    Google Scholar 

  23. Baillagou, P.E. and Soong, D.S., Chem. Eng. Sci., 1985, vol. 40, no. 1, p. 87.

    Article  CAS  Google Scholar 

  24. Mahabadi, H.K. and O’Driscoll, K.F., J. Macromol. Sci., Part A, 1977, vol. 11, no. 5, p. 967.

    Article  Google Scholar 

  25. Bevington, J.C., Melville, H.W., and Taylor, R.P., J. Polym. Sci., 1954, vol. 14, no. 2, p. 463.

    Article  CAS  Google Scholar 

  26. Ulitin, N.V., Tereshchenco, K.A., Shiyan, D.A., and Zaikov, G.E., Rubber Chem. Technol., 2015, vol. 88, no. 4, p. 574.

    Article  CAS  Google Scholar 

  27. Ulitin, N.V. and Tereshchenko, K.A., Kinet. Catal., 2016, vol. 57, no. 2, p. 170.

    Article  CAS  Google Scholar 

  28. Ulitin, N.V. and Tereshchenko, K.A., Kinet. Catal., 2016, vol. 57, no. 2, p. 177.

    Article  CAS  Google Scholar 

  29. Hui, A.W. and Hamielec, A.E., J. Appl. Polym. Sci., 1972, vol. 16, p. 749.

    Article  CAS  Google Scholar 

  30. Balke, S., Garcia-Rubio, L., and Patel, R., Polym. Eng. Sci., 1982, vol. 22, no. 12, p. 777.

    Article  CAS  Google Scholar 

  31. Balke, S.T. and Hamielec, A.E., J. Appl. Polym. Sci., 1973, vol. 17, p. 905.

    Article  CAS  Google Scholar 

  32. Tobolsky, A.V. and Baysal, B., Polym. Sci., 1953, vol. 11, no. 5, p. 471.

    Article  CAS  Google Scholar 

  33. Dolan, E.D., Lewis, R.M., and Torczon, V.J., SIAM J. Optim., 2003, vol. 14, no. 2, p. 567.

    Article  Google Scholar 

  34. Ultra-High Performance Liquid Chromatography and Its Applications, Quanyun Alan Xu, Ed., New Jersey: Wiley, 2013.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Ulitin.

Additional information

Original Russian Text © N.V. Ulitin, K.A. Tereshchenko, A.K. Frizen, A.O. Burakova, S.V. Kolesov, D.A. Shiyan, N.E. Temnikova, 2017, published in Kinetika i Kataliz, 2017, Vol. 58, No. 2, pp. 133–144.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulitin, N.V., Tereshchenko, K.A., Frizen, A.K. et al. Kinetic scheme and rate constants for methyl methacrylate synthesis occurring via the radical–coordination mechanism. Kinet Catal 58, 122–132 (2017). https://doi.org/10.1134/S0023158417020136

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158417020136

Keywords

Navigation