Skip to main content
Log in

Kinetics and mechanism of the photolysis of CF2ClBr exposed to light with a wavelength of 253.7 nm

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

CF2ClBr mixed with oxygen was photolyzed using a low pressure mercury lamp, and the kinetics of photolysis was studied. The absorption spectra of the starting material and products of photolysis were recorded in the wavelength range from 200 to 900 nm on an Agilent 8453 spectrophotometer. The concentrations of the main photolysis products at different irradiation times were calculated by the mathematical processing of the absorption spectra. The scheme of CF2ClBr photolysis was suggested, the model calculations according to this scheme were performed, and the results of simulation were compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Montreal Protocol on Substances that Deplete the Ozone Layer. United Nations Environment Programme (UNEP): 2006 Assessment Report of the Halons Technical Options Committee, Nairobi, 2006.

  2. Scientific Assessment of Ozone Depletion 2006: Global Ozone Research and Monitoring Project, Report no. 50, Geneva, Switzerland, 2006, p. 572.

  3. Larin, I.K., Khimicheskaya fizika ozonovogo sloya (Chemical Physics of the Ozone Layer), Moscow: GEOS, 2013.

    Google Scholar 

  4. Solomon, S., Mills, M., Heidt, L.E., Pollock, W.H., and Tuck, A.F., J. Geophys. Res., 1992, vol. 97, p. 825.

    Article  CAS  Google Scholar 

  5. Chang, J.S. and Duewer, W.H., Annu. Rev. Phys. Chem., 1979, vol. 30, p. 443.

    Article  CAS  Google Scholar 

  6. Daniel, J.S., Solomon, S., Portman, R.W., and Garcia, R.R., J. Geophys. Res., 1999, vol. 104, p. 23871.

    Article  CAS  Google Scholar 

  7. Drougas, E., Papayannis, D.K., and Kosmas, A.M., J. Mol. Struct., 2003, vol. 623, p. 211.

    Article  CAS  Google Scholar 

  8. Noto, T., Babushok, V., Hamins, A., and Tsang, W., Combust. Flame, 1998, vol. 112, p. 147.

    Article  CAS  Google Scholar 

  9. Papanastasio, D.K., Carlon, N.R., Neuman, J.A., Fleming, E.L., Jackman, C.H., and Burkholder, J., Geophys. Rev. Lett., 2013, vol. 40, p. 464.

    Article  Google Scholar 

  10. Burkholder, J.B., Wilson, R.R., Gierczak, T., Talukdar, R., McKeen, S.A., Orlando, J.J., Vaghjiani, G.L., and Ravishankara, A.R., J. Geophys. Res., 1991, vol. 96, p. 5025.

    Article  CAS  Google Scholar 

  11. JPL Publication 10-6: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation no. 17, Pasadena, Calif.: NASA, 2011.

  12. Larin, I.K., Belyakova, T.I., Messineva, N.A., Spasskii, A.I., and Trofimova, E.M., Kinet. Catal., 2014, vol. 55, no. 5, p. 549.

    Article  CAS  Google Scholar 

  13. Timonen, R.S., Seetula, J.A., Niiranen, J., and Gutman, D., J. Phys. Chem., 1991, vol. 95, p. 4009.

    Article  CAS  Google Scholar 

  14. Codnia, J. and Azcarate, M.L., Photochem. Photobiol., 2006, vol. 82, p. 755.

    Article  CAS  Google Scholar 

  15. Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, R.G., Jenkin, M.E., Rossi, M.J., and Troe, J., Atmos. Chem. Phys., 2007, vol. 7, p. 981.

    Article  CAS  Google Scholar 

  16. Nesbitt, D.J. and Leone, S.R., J. Chem. Phys., 1981, vol. 75, p. 4873.

    Article  Google Scholar 

  17. Bedjanian, Y., Laverdet, G., and LeBras, G., J. Phys. Chem. A, 1998, vol. 102, p. 953.

    Article  CAS  Google Scholar 

  18. Clyne, M.A.A. and Cruse, H.W., J. Chem. Soc., Faraday Trans., 1972, vol. 68, p. 1281.

    Article  CAS  Google Scholar 

  19. Clyne, M.A.A. and Woon-Fat, A.R., J. Chem. Soc., Faraday Trans., 1973, vol. 69, p. 412.

    Article  CAS  Google Scholar 

  20. Goldfinger, P., Noyes, R.M., and Wen, W.Y., J. Am. Chem. Soc., 1969, vol. 91, p. 4003.

    Article  CAS  Google Scholar 

  21. Taylor, D., Tuckerman, R.T., and Whittle, E., J. Photochem., 1982, vol. 19, p. 227.

    Article  Google Scholar 

  22. Tuckerman, R.T. and Whittle, E., J. Photochem., 1985, vol. 31, p. 7.

    Article  CAS  Google Scholar 

  23. Talukdar, R.K., Hunter, M., Warren, R.F., Burkholder, J.B., and Ravishankara, A.R., Chem. Phys. Lett., 1996, vol. 262, p. 669.

    Article  CAS  Google Scholar 

  24. Lee, S.-H. and Jung, K.-H., Chem. Phys. Lett., 2001, vol. 150, p. 306.

    Article  Google Scholar 

  25. Deng, G.-H., Zhang, Y., Li, Ch.-L., Yu, Y., Liu, Z.-Ch., and Hou, H.-Q., Acta Chim. Sinica, 1997, vol. 55, p. 277.

    CAS  Google Scholar 

  26. US Patent 7195782 B2, 2007.

  27. Szakács, O., Lásztity, A., and Horváth, Zs., Anal. Chim. Acta, 1980, vol. 121, p. 219.

    Article  Google Scholar 

  28. Encyclopedia of Electrochemical Power Sources, Amsterdam: Elsevier, 2009, vol. 4, p. 111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Messineva.

Additional information

Original Russian Text © T.I. Belyakova, I.K. Larin, N.A. Messineva, A.I. Spasskii, E.M. Trofimova, 2017, published in Kinetika i Kataliz, 2017, Vol. 58, No. 2, pp. 115–121.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyakova, T.I., Larin, I.K., Messineva, N.A. et al. Kinetics and mechanism of the photolysis of CF2ClBr exposed to light with a wavelength of 253.7 nm. Kinet Catal 58, 105–110 (2017). https://doi.org/10.1134/S002315841702001X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002315841702001X

Keywords

Navigation