Skip to main content
Log in

Trinuclear tantalum clusters grafted to hydroxylated silica surfaces: A density-functional embedded-cluster study

  • 2ND Russian Congress on Catalysis—Russcatalysis (Samara, (October 2–5, 2014)
  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

To identify the coordination modes of bare and hydrogenated trinuclear tantalum species on hydroxylated silica, we computationally examined models of Ta3H n (n = 0, 3, 5–9) species grafted to a β-cris-tobalite surface. Ta3H n clusters are bound to the surface by substitution of hydrogen atoms of vicinal (…O-)3SiOH and geminal (…O-)2Si(OH)2 groups via three and six, respectively, Ta–O bonds of ~193 pm on average, in both types of models. The maximum Ta–O coordination number of non-hydrogenated Ta3 species to a silica surface is seven for the second type model surface; the additional Ta–O bond is due to an oxygen atom located in a bridging position to Ta–Ta bond. In the latter case, the mean Ta–O bond distance to one of =Si(O–)2 group is increased by 15 pm. For the complexes bound via vicinal silanol groups, each additional unit of hydrogen loading on the metal elongated the average Ta–Ta distance by ~2 pm, covering a range of 258–277 pm. For the most stable hydrogenated trimers, Ta3H9, the desorption energies of hydrogen atoms are relatively high, above 70 kJ/mol. The average Ta–Ta distances increase by ~19 pm on going from the complex (=SiO–)3Ta3H9 to complex (=SiO–)3Ta3 and by ~5 pm when the hydrogen loading is increased by one unit for (=Si(O–)2)3Ta3H n complexes, reaching the maximum value 319 pm when n = 9. The desorption energies of hydrogen atoms for the most stable tantalum trimer species grafted to the surface by geminal silanol groups, (=Si(O–)2)3Ta3H7, are rather low, less than 40 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guzman, J. and Gates, B.C., Dalton Trans., 2003, p. 3303.

    Google Scholar 

  2. Flytzani-Stephanopoulos, M. and Gates, B.C., Annu. Rev. Chem. Biomol, 2012, vol. 3, p. 545.

    Article  CAS  Google Scholar 

  3. Gillis-D'Hamers I., Philippaerts, J., van der Voort, P., and Vansant, E., J. Chem. Soc., Faraday Trans., 1990, vol. 86, p. 3747.

    Article  Google Scholar 

  4. Basset, J.-M., Lefebvre, F., and Santini, C., Coord. Chem. Rev., 1998, vol. 178–180, p. 1703.

    Article  Google Scholar 

  5. Tanaka, M., Itadani, A., Kuroda, Y., and Iwamoto, M., J. Phys. Chem. C, 2012, vol. 116, p. 5664.

    Article  CAS  Google Scholar 

  6. Soulivong, D., Norsic, S., Taoufik, M., Coperet, C., Thivolle-Cazat, J., Chakka, S., and Basset, J.-M., J. Am. Chem. Soc., 2008, vol. 130, p. 5044.

    Article  CAS  Google Scholar 

  7. Corker, J., Lefebvre, F., Lecuyer, C., Dufaud, V., Quignard, F., Choplin, A., Evans, J., and Basset, J.-M., Science, 1996, vol. 271, p. 966.

    Article  CAS  Google Scholar 

  8. Vidal, V., Theolier, A., Thivolle-Cazat, J., Basset, J.-M., and Corker, J., J. Am. Chem. Soc., 1996, vol. 118, p. 4595.

    Article  CAS  Google Scholar 

  9. Mikhailov, M.N. and Kustov, L.M., Russ. Chem. Bull., 2005, vol. 54, p. 300.

    Article  CAS  Google Scholar 

  10. Soignier, S., Taoufik, M., Le Roux, E., Saggio, G., Dablemont, C., Baudouin, A., Lefebvre, F., de Mallmann, A., Thivolle-Cazat, J., Basset, J.-M., Sunley, G., and Maunders, B.M., Organometallics, 2006, vol. 25, p. 1569.

    Article  CAS  Google Scholar 

  11. Solans-Monfort, X., Chow, C., Goure, E., Kaya, Y., Basset, J.-M., Taoufik, M., Quadrelli, E.A., and Eisenstein, O., Inorg. Chem., 2012, vol. 51, p. 7237.

    Article  CAS  Google Scholar 

  12. Nemana, S. and Gates, B.C., J. Chem. Soc., Chem. Commun., 2006, p. 3996.

    Google Scholar 

  13. Nemana, S. and Gates, B.C., Catal. Lett., 2007, vol. 113, p. 73.

    Article  CAS  Google Scholar 

  14. Veith, G.M., Lupini, A.R., Rashkeev, S., Pennycook, S.J., Mullins, D.R., Schwartz, V., Bridges, C.A., and Dudney, N.J., J. Catal., 2009, vol. 262, p. 92.

    Article  CAS  Google Scholar 

  15. Lee, E.L. and Wachs, I.E., J. Phys. Chem., C, 2007, vol. 111, p. 14410.

    Article  CAS  Google Scholar 

  16. Keller, D.E., Airaksinen, S.M.K., Krause, A.O., Weckhuysen, B.M., and Koningsberger, D.C., J. Am. Chem. Soc., 2007, vol. 129, p. 3189.

    Article  CAS  Google Scholar 

  17. Islam, M.M., Costa, D., Calatayud, M., and Tielens, F., J. Phys. Chem., vol. 113, p. 10740.

  18. Tanaka, T., Nojima, H., Yamamoto, T., Takenaka, S., Funabiki, T., and Yoshida, S., Phys. Chem. Chem. Phys., 1999, vol. 1, p. 5235.

    Article  CAS  Google Scholar 

  19. Baltes, M., Kytokivi, A., Weckhuysen, B.M., Schoonheydt, R.A., van der Voort, P., and Vansant, E.F., J. Phys. Chem. B, 2001, vol. 105, p. 6211.

    Article  CAS  Google Scholar 

  20. Moisii, C., Deguns, E.W., Lita, A., Callahan, S.D., van de Burgt, L.J., Magana, D., and Stiegman, A.E., Chem. Mater., 2006, vol. 18, p. 3965.

    Article  CAS  Google Scholar 

  21. Chempath, S., Zhang, Y., and Bell, A.T., J. Phys. Chem. C, 2007, vol. 111, p. 1291.

    Article  CAS  Google Scholar 

  22. Zhu, K., Hu, J., and Richards, R., Catal. Lett., 2005, vol. 100, p. 195.

    Article  CAS  Google Scholar 

  23. Garrot, J.-M., Lepetit, C., Che, M., and Chaquin, P., J. Phys. Chem. A, 2001, vol. 105, p. 9445.

    Article  CAS  Google Scholar 

  24. Nasluzov, V.A., Ivanova-Shor, E.A., Shor, A.M., Yudanov, I.V., and Rösch, N., Kinet. Catal., 2010, vol. 51, p. 832.

    Article  CAS  Google Scholar 

  25. Rösch, N., Nasluzov, V.A., Neyman, K.M., Pacchioni, G., and Vayssilov, G.N., in Computational Materials Science, Theoretical and Computational Chemistry Series, vol. 15, Leszczynski, J., Ed., Amsterdam: Elsevier, 2004, p. 367.

    Chapter  Google Scholar 

  26. Babaian-Kibala, E., Cotton, F.A., and Shang, M., Inorg. Chem., 1990, vol. 29, p. 5148.

    Article  CAS  Google Scholar 

  27. Cotton, F.A. and Shang, M., Inorg. Chem., 1993, vol. 32, p. 969.

    Article  CAS  Google Scholar 

  28. Nemana, S. and Gates, B.C., Langmuir, 2006, vol. 22, p. 8214.

    Article  CAS  Google Scholar 

  29. Nemana, S. and Gates, B.C., J. Phys. Chem. B, 2006, vol. 110, p. 17546.

    Article  CAS  Google Scholar 

  30. Nemana, S., Sun, J., and Gates, B.C., J. Phys. Chem., vol. 112, p. 7477.

  31. Guesmi, H. and Tielens, F., J. Phys. Chem. C, 2008, vol. 116, p. 994.

    Article  Google Scholar 

  32. Lim, K.H., Zakharieva, O., Shor, A.M., and Rösch, N., Chem. Phys. Lett., 2007, vol. 444, p. 280.

    Article  CAS  Google Scholar 

  33. Shor, A.M., Ivanova-Shor, E.A., Laletina, S.S., Nasluzov, V.A., and Rösch, N., Surf. Sci., 2010, vol. 604, p. 1705.

    Article  CAS  Google Scholar 

  34. Shor, E.A., Nasluzov, V.A., Shor, A.M., Vayssilov, G.N., and Rösch, N., J. Phys. Chem. C, 2007, vol. 111, p. 12340.

    Article  CAS  Google Scholar 

  35. Shor A.M., Ivanova Shor, E.A., Laletina, S., Nasluzov, V.A., Vayssilov, G.N., and Rösch, N., Chem. Phys., 2009, vol. 363, p. 33.

    Article  CAS  Google Scholar 

  36. Vayssilov, G.N., Petrova, G.P., Shor, E.A., Nasluzov, V.A., Shor, A.M., Petkov, P.S., and Rösch, N., Phys. Chem. Chem. Phys., 2012, vol. 14, p. 5879.

    Article  CAS  Google Scholar 

  37. Dunlap, B.I. and Rösch, N., Adv. Quantum Chem., 1990, vol. 21, p. 317.

    Article  CAS  Google Scholar 

  38. Belling, T., Grauschopf, T., Krüger, S., Mayer, M., Nörtemann, F., Staufer, M., Zenger, C., and Rösch, N., in High Performance Scientific and Engineering Computing, Lecture Notes in Computational Science and Engineering, vol. 8, Bungartz, H.-J., Durst, F., Zenger, C, Eds., Heidelberg: Springer, 1999, p. 439.

    Google Scholar 

  39. Belling, T., Grauschopf, T., Krüger, S., Nörtemann, F., Staufer, M., Mayer, M., Nasluzov, V.A., Birkenheuer, U., Hu, A., Matveev, A.V., Shor, A.M., FuchsRohr, M.S.K., Neyman, K.M., Ganyushin, D.I., Kerdcharoen, T., et al., ParaGauss version, p. 1.

  40. Häberlen, O.D. and Rösch, N., Chem. Phys. Lett., 1992, vol. 199, p. 491.

    Article  Google Scholar 

  41. Rösch, N., Matveev, A.V., Nasluzov, V.A., Neyman, K.M., Moskaleva, L.V., and Krüger, S., in Relativistic Electronic Structure Theory: Applications, Schwerdtfeger, P, Ed., Amsterdam: Elsevier, 2004, p. 656.

  42. Nasluzov, V.A., Ivanova, E.A., Shor, A.M., Vayssilov, G.N., Birkenheuer, U., and Rösch, N., J. Phys. Chem. B, 2003, vol. 107, p. 2228.

    Article  CAS  Google Scholar 

  43. Shor, A.M., Ivanova-Shor, E.A., Nasluzov, V.A., Vayssilov, G.N., and Rösch, N., J. Theor. Comput. Chem., 2007, vol. 3, p. 2290.

    Article  CAS  Google Scholar 

  44. Nasluzov, V.A., Rivanenkov, V.V., Gordienko, A.B., Neyman, K.M., Birkenheuer, U., and Rösch, N., J. Chem. Phys., 2001, vol. 115, p. 8157.

    Article  CAS  Google Scholar 

  45. Becke, A.D., Phys. Rev. A: At. Mol. Opt. Phys., 1988, vol. 38, p. 3098.

    Article  CAS  Google Scholar 

  46. Perdew, J.P., Phys. Rev. B: Condens. Matter, 1986, vol. 33, p. 8822.

    Article  Google Scholar 

  47. Yudanov, I., Pacchioni, G., Neyman, K., and Rösch, N., J. Phys. Chem. B, 1997, vol. 101, p. 2786.

    Article  CAS  Google Scholar 

  48. Wright, A.F. and Leadbetter, A.J., Philos. Mag., 1975, vol. 31, p. 1391.

    Article  CAS  Google Scholar 

  49. Boys, S.F. and Bernardi, F., Mol. Phys., 1970, vol. 19, p. 553.

    Article  CAS  Google Scholar 

  50. Petrova, G.P., Vayssilov, G.N., and Rösch, N., J. Phys. Chem. C, 2007, vol. 111, p. 14484.

    Article  CAS  Google Scholar 

  51. Pyykkö, P. and Atsumi, M., Chem. Eur. J., 2009, vol. 15, p. 186.

    Article  Google Scholar 

  52. Vayssilov, G.N. and Rösch, N., Phys. Chem. Chem. Phys., 2005, vol. 7, p. 4019.

    Article  CAS  Google Scholar 

  53. Petkov, P.S., Petrova, G.P., Vayssilov, G.N., and Rösch, N., J. Phys. Chem. C, 2010, vol. 114, p. 8500.

    Article  CAS  Google Scholar 

  54. Kip, B.J., Duivenvoorden, F.B.M., Koningsberger, D.C., and Prins, R., J. Catal., 1987, vol. 105, p. 26.

    Article  CAS  Google Scholar 

  55. Liu, X., Dilger, H., Eichel, R.A., Kunstmann, J., and Roduner, E., J. Phys. Chem. B, 2006, vol. 110, p. 2013.

    Article  CAS  Google Scholar 

  56. Petrova, G.P., Vayssilov, G.N., and Rösch, N., J. Phys. Chem. C, 2008, vol. 112, p. 18572.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Ivanova-Shor.

Additional information

Original Russian Text © V.A. Nasluzov, Shane M. Parker, A. Genest, A.M. Shor, E.A. Ivanova-Shor, Notker Rösch, 2015, published in Kinetika i Kataliz, 2015, Vol. 56, No. 5, pp. 640–648.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasluzov, V.A., Parker, S.M., Genest, A. et al. Trinuclear tantalum clusters grafted to hydroxylated silica surfaces: A density-functional embedded-cluster study. Kinet Catal 56, 631–639 (2015). https://doi.org/10.1134/S0023158415050134

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158415050134

Keywords

Navigation