Skip to main content
Log in

Effect of isovalent substitution on the structure and ionic conductivity of Li0.5 − y Na y La0.5□Nb2O6

  • Published:
Inorganic Materials Aims and scope

Abstract

We have synthesized Li0.5 − y Na y La0.5□Nb2O6 defect perovskite solid solutions with 0 ≤ y ≤ 0.5. Their structure has been shown to undergo partial disordering with increasing sodium content. Lithium ion diffusion in the Li0.5 − y Na y La0.5□Nb2O6 system exhibits no percolation effects. The ionic conductivity as a function of sodium content has a maximum due to two competing factors: the increase in perovskite cell volume and the decrease in lithium ion concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burmakin, E.I., Tverdye elektrolity s provodimost’yu po kationam shchelochnykh metallov (Alkali Metal Ion Conducting Solid Electrolytes), Moscow: Nauka, 1992, p. 263.

    Google Scholar 

  2. Belous, A.G., Butko, V.I., Novitskaya, G.N., et al., Electrical Conductivity of La2/3 − x M3x TiO3 Perovskites, Ukr. Fiz. Zh. (Russ. Ed.), 1986, vol. 31, no. 4, pp. 576–581.

    CAS  Google Scholar 

  3. Belous, A.G., Properties of Heterosubstituted Titanates with Perovskite Structure, 3rd Euro-Ceramics, 1993, vol. 2, pp. 341–346.

    Google Scholar 

  4. Inaguma, Y., Liquan, C., Itoh, M., et al., High Ionic Conductivity in Lithium Lanthanum Titanate, Solid State Commun., 1993, vol. 86, no. 10, pp. 689–695.

    Article  CAS  Google Scholar 

  5. Ibarra, J., Varez, A., Leon, C., et al., Influence of Composition on the Structure and Conductivity of the Fast Ionic Conductors La2/3 − x Li3x TiO3 (0.03 ≤ x ≤ 0.167), Solid State Ionics, 2000, vol. 1, pp. 1–9.

    Google Scholar 

  6. Belous, A.G., Didukh, I.R., Novosadova, E.B., and Pashkova, E.V., Electrical Conductivity of (Pb1 − x La2/3 − xy M3x )B2O6, Fiz. Tverd. Tela (Leningrad), 1986, vol. 28, no. 10, pp. 3232–3236.

    Google Scholar 

  7. Belous, A.G., Gavrilenko, O.N., Pashkova, E.V., and Mirnyi, V.N., Lithium Ion Conductivity and Crystal-Chemical Aspects of La2/3 − x Li3x 4/3 − 2x Nb2O6 Defect Perovskite Solid Solutions, Elektrokhimiya, 2002, vol. 38, no. 4, pp. 479–484.

    Google Scholar 

  8. Belous, A., Pashkova, E., Gavrilenko, O., et al., Solid Electrolytes Based on Lithium-Containing Lanthanum Metaniobates, J. Eur. Ceram. Soc., 2004, vol. 24, pp. 1301–1304.

    Article  CAS  Google Scholar 

  9. Belous, A.G., Gavrilenko, O.N., Pashkova, E.V., et al., Effect of Synthesis Conditions on the Lithium Nonstoichiometry and Properties of La2/3 − x Li3x 4/3 − 2x M2O6 (M = Nb, Ta) Perovskite-like Solid Solutions, Neorg. Mater., 2004, vol. 40, no. 8, pp. 993–1000 [Inorg. Mater. (Engl. Transl.), vol. 40, no. 8, pp. 867–873].

    Article  Google Scholar 

  10. Paris, M.A., Sanz, J., Leon, C., et al., Li Mobility in the Orthorhombic Li0.18La0.61TiO3 Perovskite Studied by NMR and Impedance Spectroscopies, Chem. Mater., 2000, vol. 12, pp. 1694–1701.

    Article  CAS  Google Scholar 

  11. Maier, J., Nano-Sized Mixed Conductors (Aspects of Nano-Ionics. Part III), Solid State Ionics, 2002, vol. 148, pp. 367–374.

    Article  CAS  Google Scholar 

  12. West, A.R., Solid State Chemistry and Its Applications, Chichester: Wiley, 1985. Translated under the title Khimiya tverdogo tela, Moscow: Mir, 1988, pp. 440–441.

    Google Scholar 

  13. Itoh, M., Inaguma, Y., Jung, W., et al., High Lithium Ion Conductivity in the Perovskite-Type Compounds Ln1/2Li1/2TiO3 (Ln = La, Pr, Nd, Sm), Solis State Ionics, 1995, vols. 70–71, pp. 203–207.

  14. Thangadura, V.I., Shukla, A.K., and Gopalakrishnn, J., LiSr1.650.35B1.3 B′1.7 O9(B = Ti, Zr; B’ = Nb, Ta): New Lithium Ion Conductors Based on the Perovskite Structure, Chem. Mater., 1999, vol. 11, pp. 835–839.

    Article  Google Scholar 

  15. Watanabe, H. and Kuwano, J., Formation of Perovskite Solid Solutions and Lithium-Ion Conductivity in the Compositions Li2x Sr1 − 2x M III0.5−x Ta0.5 + x O3 (M = Cr, Fe, Co, Al, Ga, In, Y), J. Power Sources, 1997, vol. 68, pp. 421–426.

    Article  CAS  Google Scholar 

  16. Gavrilenko, O.N., Belous, A.G., Kovalenko, L.L., and Pashkova, Ye.V., Effect of the A-Site Substitution on the Structure Peculiarities and Ionic Conductivity of Solid Electrolytes La2/3 − xy Li3xy Sr2y 4/3 − 2x Nb2O6, Mater. Manuf. Processes, 2008, vol. 23, pp. 607–610.

    Article  CAS  Google Scholar 

  17. Rivera, A., León C., Santamaria, J., et al., Percolation-Limited Ionic Diffusion in Li0.5 − x NaxLa0.5TiO3 Perovskites (0 < x < 0.5), Chem. Mater., 2002, vol. 14, no. 12, pp. 5148–5152.

    Article  CAS  Google Scholar 

  18. Sanz, J., Alonso, J., Várez, A., et al., Structural Analysis of Li-Ion Conducting Perovskites Li0.5 − x NaxLa0.5TiO3, The Institute Laue-Langevin Annual Report, 2002, pp. 34–35.

  19. Sanz, J., Rivera, A., León, C., et al., Li Mobility in (Li, Na)yLa0.66 − y/3TiO3 Perovskites (0.09 < y < 0.5). A Model System for the Percolation Theory, Mater. Res. Soc. Proc., 2003, vol. 756, pp. EE2.31–EE2.36.

    Google Scholar 

  20. Herrero, C., Várez, A., Rivera, A., et al., Influence of Vacancy Ordering on the Percolative Behavior of (Li1 − x Nax)3y La2/3y TiO3 Perovskites, J. Phys. Chem. B, 2005, vol. 109, no. 8, pp. 3262–3268.

    Article  CAS  Google Scholar 

  21. Sanjuan, M., Laguna, M., Belous, A., and V’yunov, O., On the Local Structure and Lithium Dynamics of La0.5(Li, Na)0.5TiO3 Ionic Conductors. A Raman Study, Chem. Mater., 2005, vol. 17, no. 23, pp. 5862–5866.

    Article  CAS  Google Scholar 

  22. Jimene, R., Rivera, A., Várez, A., and Sanz, J., Li Mobility in Li0.5 − x NaxLa0.5TiO3 Perovskites (0 × 0.5), Solid State Ionics, 2009, vol. 180, no. 26, pp. 1362–1371.

    Article  Google Scholar 

  23. Stauffer, D. and Aharony, A., Introduction to Percolation Theory, London: Taylor and Francis, 1992.

    Google Scholar 

  24. Katsumata, T., Inaguma, Y., and Itoh, M., New Perovskite-Type Lithium Ion Conductors, LaxMyLi1 − 3xy NbO3 (M = Ag and Na), Solid State Ionics, 1998, vols. 113–115, pp. 465–469.

    Article  Google Scholar 

  25. Jin Shan, Y., Sinozaki, N., and Nakamura, T., Preparation and Characterizations of New Perovskite Oxides LaxNa1 − 3xy Liy2x NbO3 (0 ≤ x and y ≤ 0.2), Solid State Ionics, 1998, vol. 108, pp. 403–406.

    Article  Google Scholar 

  26. Nalbandyan, V.B. and Shukaev, I.A., Novel Tantalates and Niobates, Zh. Neorg. Khim, 1989, vol. 34, pp. 793–795.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Belous.

Additional information

Original Russian Text © A.G. Belous, O.N. Gavrilenko, O.I. V’yunov, S.D. Kobilyanskaya, V.V. Trachevskii, 2011, published in Neorganicheskie Materialy, 2011, Vol. 47, No. 3, pp. 359–363.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belous, A.G., Gavrilenko, O.N., V’yunov, O.I. et al. Effect of isovalent substitution on the structure and ionic conductivity of Li0.5 − y Na y La0.5□Nb2O6 . Inorg Mater 47, 308–312 (2011). https://doi.org/10.1134/S002016851103006X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016851103006X

Keywords

Navigation