Skip to main content
Log in

Ecophysiological characteristics of two planktonic desmid species originating from trophically different lakes

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Two planktonic desmid species were compared in some of their ecophysiological characteristics. Staurastrum chaetoceras, well-known for its abundant occurrence in eutrophic lakes, showed a higher photosynthetic capacity and a higher maximum (intrinsic) growth rate than Cosmarium abbreviatum var. planctonicum, a taxon only encountered in oligo-mesotrophic habitats. The two taxa are comparable in cell size. When grown under a stringent continuous inorganic phosphorus (Pi) limitation C. abbreviatum realized a higher growth rate, due to a higher affinity for the uptake of Pi, than S. chaetoceras. On the other hand, under those conditions, S. chaetoceras displayed a two times higher maximum Pi uptake rate (Vmax). Regarding cellular alkaline phosphatase activity (hydrolysis of the organic P substrate MFP) C. abbreviatum showed both a higher affinity and maximum rate than S. chaetoceras.

In a way, these characteristics reflect the distribution pattern of the two species in the field. For in eutrophic lakes, during the summer algal bloom, species often have to compete for light as the growth limiting factor, whereas species occurring in oligo-mesotrophic lakes usually face permanently growth-limiting P concentrations. Since in eutrophic lakes during summer algal bloom dissolved inorganic P concentrations can also be low, the ability of phytoplankton to acquire Pi from short-lived pulses (e.g. excretion of P by zooplankton or fish) has to be considered an important additional characteristic in view of competition. Concerning the two desmid species under discussion, S. chaetoceras will have a competitive advantage when Pi is supplied in distinct pulses, due to its higher Vmax values. On the other hand, C. abbreviatum possibly will be superior in competition for organic P substrates.

In the species studied, different strategies were found to benefit optimally from the resource conditions inherent in the trophic state of their habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Berger, C. & H. E. Sweers, 1988. The IJsselmeer and its phytoplankton –with special attention to the suitability of the lake as a habitat for Oscillatoria agardhii Gom. J. Plankton Res. 10: 579–599.

    CAS  Google Scholar 

  • Berman, T., 1970. Alkaline phosphatases and phosphorus availability in Lake Kinneret. Limnol. Oceanogr. 15: 663–674.

    CAS  Google Scholar 

  • Coesel, P. F. M. 1994. On the ecological significance of a cellular mucilaginous envelope in planktic desmids. Algol. Stud. 73: 65– 74.

    Google Scholar 

  • Coesel, P. F. M. & K. Wardenaar, 1990. Growth responses of planktonic desmid species in a temperature-light gradient. Freshwat. Biol. 23: 551–560.

    Article  Google Scholar 

  • Coesel, P. F. M. & K. Wardenaar, 1994. Light-limited growth and photosynthetic characteristics of two planktonic desmid species. Freshwater Biol. 31: 221–226.

    Article  Google Scholar 

  • Doonan, B. B. & T. E. Jensen, 1977. Ultrastructural localization of alkaline phosphatase in the blue-green bacterium Plectonema boryanum. J. Bact. 132: 967–973.

    PubMed  CAS  Google Scholar 

  • Guillard, R. R. L., P. Kilham & T. A. Jackson, 1973. Kinetics of silicon-limited growth in the marine diatom Thalassiosira pseudonana hasle and heimdal (= Cyclotella nana hustedt). J. Phycol. 9: 233–237.

    Article  CAS  Google Scholar 

  • Hantke, B., I. Domany, P. Fleischer, M. Koch, P. Pleβ, M. Wiendl & A. Melzer, 1996a. Depth profiles of the kinetics of phosphatase activity in hardwater lakes of different trophic level. Arch. Hydrobiol. 135: 451–471.

    CAS  Google Scholar 

  • Hantke, B., P. Fleischer, I. Domany, M. Koch, P. Pleβ, M. Wiendl & A. Melzer, 1996b. Prelease from DOP by phosphatase activity in comparison to P excretion by zooplankton. Studies in hardwater lakes of different trophic level. Hydrobiologia 317: 151–162.

    Article  CAS  Google Scholar 

  • Healey, F. P., 1985. Interacting effects of light and nutrient limitation on the growth rate of Synechococcus linearis (Cyanophyceae). J. Phycol. 21: 134–146.

    Article  Google Scholar 

  • Hecky, R. E. & P. Kilham, 1974. Environmental control of phytoplankton cell size. Limnol. Oceanogr. 19: 361–366.

    Google Scholar 

  • Herbland, A., A. Le Bouteiller & P. Raimboult, 1985. Size structure of phytoplankton biomass in the equatorial Atlantic Ocean. DeepSea Res. 32: 810–836.

    Google Scholar 

  • Huisman, J. & F. J. Weissing, 1994. Light-limited growth and competition for light in well-mixed aquatic environments: An elementary model. Ecology 75: 507–520.

    Article  Google Scholar 

  • Huisman, J. & F. J. Weissing, 1995. Competition for nutrients and light in a mixed water column: A theoretical analysis. Am. Nat. 146: 536–564.

    Article  Google Scholar 

  • Jansson, M., H. Olsson & K. Pettersson, 1988. Phosphatases; origin, characteristics and function in lakes. Hydrobiologia 170: 157– 175.

    CAS  Google Scholar 

  • Kilham, P. & D. Tilman, 1979. The importance of resource competition and nutrient gradients for phytoplankton ecology. Ergebn. Limnol. 13: 110–119.

    Google Scholar 

  • Knoechel, R. & F. deNoyelles, 1980. Analysis of the response of hypolimnetic phytoplankton in continuous culture to increased light or phosphorus using track autoradiography. Can. J. Fish. aquat. Sci. 37: 434–441.

    Google Scholar 

  • Kuenzler, E. J. & J. P. Peras, 1965. Phosphatase of marine algae. Biol. Bull. 128: 271–284.

    Google Scholar 

  • Lingeman, R., F. Heinis & A. Veen, 1987. Time series of physical, chemical and plankton parameters in Lake Maarsseveen I: 1980– 1986. Hydrobiol. Bull. 21: 25–38.

    Article  CAS  Google Scholar 

  • Lund, J. W. G., 1965. The ecology of freshwater phytoplankton. Biol. Rev. 40: 231–293.

    Google Scholar 

  • Maestrini, S. Y. & D. J. Bonin, 1981. Competition among phytoplankton based on inorganic macronutrients. In Platt T. (ed), Physiological basis of phytoplankton ecology. Can. Bull. Fish. aquat. Sci. Dept. of Fisheries and Oceans, Ottawa: 264–278.

    Google Scholar 

  • Perry, M. J., 1972. Alkaline phosphatase activity in subtropical Central North Pacific waters using a sensitive fluorometric method. Mar. Biol. 15: 113–119.

    Article  CAS  Google Scholar 

  • Phillips, O. M., 1973. The equilibrium and stability of simple marine biological systems. I. Primary nutrients consumers. Am. Nat. 107: 73–93.

    Article  Google Scholar 

  • Reynolds, C. S., 1987. The response of phytoplankton communities to changing lake environments. Schweiz. Z. Hydrol. 49: 220–235.

    Google Scholar 

  • Rhee, GY.& I. J. Gotham, 1981. The effect of environmental factors on phytoplankton growth: temperature and the interactions of temperature with nutrient limitation. Limnol. Oceanogr. 26: 635– 648.

    Article  CAS  Google Scholar 

  • Riegman, R. & L. R. Mur, 1984. Regulation of phosphate uptake kinetics in Oscillatoria agardhii. Arch. Microbiol. 139: 28–32.

    Article  CAS  Google Scholar 

  • Smith, R. E. H. & J. Kalff, 1982. Size-dependent phosphorus uptake kinetics and cell quota in phytoplankton. J. Phycol. 18: 275–284.

    Article  CAS  Google Scholar 

  • Sommer, U., 1981. The role of r-and K-selection in the succession of phytoplankton in Lake Constance. Acta Oecologia 2: 327–342.

    Google Scholar 

  • Spijkerman, E. & P. F. M. Coesel, 1996a. Phosphorus uptake and growth kinetics of two planktonic desmid species. Eur. J. Phycol. 31: 53–60.

    Google Scholar 

  • Spijkerman, E. & P. F. M. Coesel, 1996b. Competition for phosphorus between planktonic desmid species in continuous flow culture. J. Phycol. 32: 939–948.

    Article  Google Scholar 

  • Swain, W. R., R. Lingeman & F. Heinis, 1987. A characterization and description of the Maarsseveen Lake system. Hydrobiol. Bull. 21: 5–16.

    Article  CAS  Google Scholar 

  • Taylor, P. A. & P. J. LeB. Williams, 1975. Theoretical studies on the coexistence of competing species under continuous-flow conditions. Can. J. Microbiol. 21: 90–98.

    Article  PubMed  CAS  Google Scholar 

  • Tilman, D., 1977. Resource competition between planktonic algae: An experimental and theoretical approach. Ecology 58: 338–348.

    Article  CAS  Google Scholar 

  • Tilman, D., 1980. Resources: a graphical-mechanistic approach to competition and predation. Am. Nat. 116: 362–393.

    Article  Google Scholar 

  • Tilman, D., 1982. Resource competition and community structure. Princeton.

  • Tilman, D., S. S. Kilham & P. Kilham, 1982. Phytoplankton community ecology: The role of limiting nutrients. Ann. Rev. Ecol. Syst. 13: 349–372.

    Article  Google Scholar 

  • Van Liere, L., J. G. Loogman & L. R. Mur, 1978. Measuring lightirradiance in cultures of phototrophic microorganisms. FEMS Microbiol. Letters 3: 161–164.

    Article  Google Scholar 

  • Watson, S. & J. Kalff, 1981. Relationships between nannoplankton and lake trophic status. Can. J. Fish. aquat. Sci. 38: 960–967.

    Google Scholar 

  • Wehr, J. D., 1993. Effects of experimental manipulations of light and phosphorus supply on competition among picoplankton and nanoplankton in an oligotrophic lake. Can. J. Fish. aquat. Sci. 50: 936–945.

    Article  Google Scholar 

  • Wynne, D. & M. Gophen, 1981. Phosphatase activity in freshwater zooplankton. Oikos 37: 369–376.

    CAS  Google Scholar 

  • Zevenboom, W., 1986. Ecophysiology of nutrient uptake, photosynthesis and growth. In Platt T. & W.K.W. Li (eds), Photosynthetic picoplankton. Can. Bull. Fish. aquat. Sci. 214: 391–422.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spijkerman, E., Coesel, P.F.M. Ecophysiological characteristics of two planktonic desmid species originating from trophically different lakes. Hydrobiologia 369, 109–116 (1998). https://doi.org/10.1023/A:1017030817750

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017030817750

Navigation