Skip to main content
Log in

An Implementation of the QSPLINE Method for Solving Convex Quadratic Programming Problems With Simple Bound Constraints

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, Massachusetts (1974).

    Google Scholar 

  2. P. Berman, N. Kovoor and P. Pardalos, “Algorithms for the least distance problem,” In:Complexity in Numerical Optimization (P. M. Pardalos, Ed. ), World Scientific (1993), pp. 33-56.

  3. S. Billups and M. Ferris, “QPCOMP:A quadratic programming based solver for mixed complemen-tarity problems,” Math. Program., Ser. B, 76, 533–562 (1997).

    Google Scholar 

  4. N. Boland, “A dual-active-set algorithm for positive semide nite quadratic programming,” Math. Program., 78, 1–27 (1997).

    Google Scholar 

  5. G. Golub and C. Van Loan, Matrix Computations, Johns Hopkins Univ. Press, Baltimore, Maryland (1987).

    Google Scholar 

  6. P. Brucker, “An O(n)algorithm for the quadratic knapsack problem,” Oper. Res. Lett., 3, 163–166 (1984).

    Google Scholar 

  7. T. F. Coleman and L. A. Hulbert, “A globally and superlinearly convergent algorithm for convex quadratic programs with simple bounds,” SIAM J. Optim., 3, 298–321 (1993).

    Google Scholar 

  8. T. Coleman and Y. Li, “A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables,” SIAM J. Optim., 6, 1040–1058 (1996).

    Google Scholar 

  9. Z. Dostál, “Box constrained quadratic programming with proportioning and projections,” SIAM J. Optim., 7, 871–887 (1997).

    Google Scholar 

  10. M. Dyer, “Linear time algorithms for two-and three-variable linear programs,” SIAM J. Comput., 13, 31–45 (1984).

    Google Scholar 

  11. M. Dyer, “On a multi-dimensional search technique and its application to the Euclidean one-center problem,” SIAM J. Comput., 15, 725–738 (1986).

    Google Scholar 

  12. H. Ekblom, “A new algorithm for the Huber estimator in linear models,” BIT, 28, 123–132 (1988).

    Google Scholar 

  13. L. Fernandes, A. Fischer, J. Judice, C. Requejo, and J. Soares, “A block active set algorithm for large-scale quadratic programming with box constraints,” Ann. Oper. Res., 81, 75–95 (1998).

    Google Scholar 

  14. R. Fletcher and M. J. D. Powell, “On the modi cation of LDL T factorizations,” Math. Comput., 28, 1067–1087 (1974).

    Google Scholar 

  15. A. Friedlander and J. M. Martínez, “On the maximization of a concave quadratic function with box constraints,” SIAM J. Optim., 4, 177–192 (1994).

    Google Scholar 

  16. A. Friedlander, J. Martínez, and S. Santos, “On the resolution of linearly constrained convex mini-mization problems,” SIAM J. Optim., 4, 331–339 (1994).

    Google Scholar 

  17. M. Fukushima, “Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems,” Math. Program., 53, 99–110 (1992).

    Google Scholar 

  18. W. M. Gentleman, “Least-squares computation by Givens transformations without square roots,” J. Inst. Math. Appl., 12, 329–336 (1973).

    Google Scholar 

  19. P. Gill, W. Murray, M. Saunders, and M. Wright, “Inertia-controlling methods for general quadratic programming,” SIAM Rev., 33, 1–36 (1991).

    Google Scholar 

  20. L. Grippo and S. Lucidi, “A differentiable exact penalty function for bound constrained quadratic programming problems,” Optimization, 22, 557–578 (1991).

    Google Scholar 

  21. L. Grippo and S. Lucidi, “On the solution of a class of quadratic programs using a differentiable exact penalty function,” In:System Modelling and Optimization (H. J. Sebastian and K. Tammer, Eds. ), Lect. Notes Control Inform. Sci., Vol. 143, Springer-Verlag, Berlin (1990), pp. 764–773.

    Google Scholar 

  22. W. Hager and D. Hearn, “Application of the dual active set algorithm to quadratic network opti-mization,” Comput. Optim. Appl., 1, 349–373 (1993).

    Google Scholar 

  23. P. Harker and J.-S. Pang, “A damped-Newton method for the linear complementarity problem,” In; Computational Solution of Nonlinear Systems of Equations (Fort Collins, CO, 1988), Lect. Appl. Math., Vol. 26, Amer. Math. Soc., Providence, Rhode Island (1990), pp. 265–284.

    Google Scholar 

  24. P. J. Huber, Robust Statistics, John Wiley, New York (1981).

    Google Scholar 

  25. C. Kanzow, “An unconstrained optimization technique for large-scale linearly constrained convex minimization problems,” Computing, 53, 101–117 (1994).

    Google Scholar 

  26. W. Li, “Numerical algorithms for the Huber M-estimator problem,” In:Approximation Theory, VIII, Vol. 1:Approximation and Interpolation (C. K. Chui and L. L. Schumaker, Eds. ), World Scientific, New York (1995), pp. 325–334.

    Google Scholar 

  27. W. Li, “Linearly convergent descent methods for unconstrained minimization of a convex quadratic spline,” J. Optimization Theory Appl., 86, 145–172 (1995).

    Google Scholar 

  28. W. Li, “A conjugate gradient method for unconstrained minimization of strictly convex quadratic splines,” Math. Program., 72, 17–32 (1996).

    Google Scholar 

  29. W. Li, “Differentiable piecewise quadratic exact penalty functions for quadratic programs with simple bound constraints,” SIAM J. Optim., 6, 299–315 (1996).

    Google Scholar 

  30. W. Li, P. Pardalos, and C.-G. Han, “Gauss–Seidel method for least distance problems,” J. Optimiza-tion Theory Appl., 75, 487–500 (1992).

    Google Scholar 

  31. W. Li and J. Peng, Exact penalty functions for constrained minimization problems via regularized gap function of variational inequality problems, Prepr., Dept. Math. Stat., Old Dominion University, Norfolk, VA, USA.

  32. W. Li and J. Swetits, “A Newton method for convex regression, data smoothing and quadratic programming with bounded constraints,” SIAM J. Optim., 3, 466–488 (1993).

    Google Scholar 

  33. W. Li and J. Swetits, “A new algorithm for strictly convex quadratic programs,” SIAM J. Optim., 7, 595–619 (1997).

    Google Scholar 

  34. W. Li and J. Swetits, “Regularized Newton methods for minimization of convex quadratic splines with singular Hessians,” In:Reformulation:Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods (M. Fukushima and L. Qi, Eds. ), Kluwer Academic (1999), pp. 235–257.

  35. C.-J. Lin and J. Moré, Newton 's method for large bound-constrained optimization problems, Prepr. ANL/MCS-P724-0898, Math. Comput. Sci. Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.

  36. Y.-Y. Lin and J.-S. Pang, “Iterative methods for large quadratic programs:A survey,” SIAM J. Control Optimization, 25, 383–411 (1987).

    Google Scholar 

  37. Z.-Q. Luo, “Convergence analysis of primal-dual interior point algorithms for convex quadratic pro-grams,” In:Recent Trends in Optimization Theory and Applications, World Sci. Ser. Appl. Anal., Vol. 5, World Scientific, River Edge, New Jersey (1995), pp. 255–270.

    Google Scholar 

  38. K. Madsen and H. Nielsen, “Finite algorithms for robust linear regression,” BIT, 30, 682–699 (1990).

    Google Scholar 

  39. K. Madsen, H. Nielsen, and M. Pinar, “Bounded constrained quadratic programming via piecewise quadratic functions,” SIAM J. Optim., 9, 62–83 (1999).

    Google Scholar 

  40. N. Megiddo, “Linear programming in linear time when the dimension is fixed,” J. ACM, 31, 114–127 (1984).

    Google Scholar 

  41. J. Móre and D. Sorensen, “Computing a trust region step,” SIAM J. Sci. Stat. Comput., 4, 553–572 (1983).

    Google Scholar 

  42. J. Móre and G. Toraldo, “Algorithms for bound constrained quadratic programming problems,” Numer. Math., 55, 377–400 (1989).

    Google Scholar 

  43. J. J. Moré and G. Toraldo, “On the solution of large quadratic programming problems with bound constraints,” SIAM J. Optim., 1, 93–113 (1991).

    Google Scholar 

  44. Yu. E. Nesterov and M. Todd, “Primal-dual interior-point methods for self-scaled cones,” SIAM J. Optim., 8, 324–364 (1998).

    Google Scholar 

  45. H. Nielsen, AAFAC:A package of FORTRAN 77 subprograms for solving AT Ax =c, Report NI 90-01, Institute for Numerical Analysis, Technical University of Denmark, Lyngby, Denmark.

  46. J. S. Pang, “Methods for quadratic programming:A survey,” Comput. Chem. Eng., 7, 583–594 (1983).

    Google Scholar 

  47. P. M. Pardalos and N. Kovoor, “An algorithm for a singly constrained class of quadratic programs subject to upper and lower bounds,” Math. Program., 46, 321–328 (1990).

    Google Scholar 

  48. R. Pytlak, “An efficient algorithm for large-scale nonlinear programming problems with simple bounds on the variables,” SIAM J. Optim., 8, 532–560 (1998).

    Google Scholar 

  49. D. F. Shanno and D. M. Rocke, “Numerical methods for robust regression:Linear models,” SIAM J. Sci. Stat. Comp., 7, 86–97 (1986).

    Google Scholar 

  50. P. Spellucci, Solving general convex QP problems via an exact quadratic augmented Lagrangian with bound constraints, Preprint, TH Darmstadt, 64289 Darmstadt, Germany.

  51. P. Spellucci and R. Felkel, Numerical experiments with an exact penalty function for convex inequality constrained QP-problems, Preprint, TH Darmstadt, 64289 Darmstadt, Germany.

  52. J. Sun, “On piecewise quadratic Newton and trust region problems,” Math. Program., 76, 451–468 (1997).

    Google Scholar 

  53. R. J. Vanderbei and T. J. Carpenter, “Symmetric inde nite systems for interior point methods,” Math. Program., 58, 1–32 (1993).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., de Nijs, J.J. An Implementation of the QSPLINE Method for Solving Convex Quadratic Programming Problems With Simple Bound Constraints. Journal of Mathematical Sciences 116, 3387–3410 (2003). https://doi.org/10.1023/A:1024029423064

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024029423064

Keywords

Navigation