Skip to main content

Advertisement

Log in

The Prospective Effects of Climate Change on Neglected Tropical Diseases in the Eastern Mediterranean Region: a Review

  • Global Environmental Health and Sustainability (W Al-Delaimy, Section Editor)
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

An increase in the annual daily temperature is documented and predicted to occur in the coming decades. Climate change has a direct effect and adverse impact on human health, as well as on multiple ecosystems and their species. The purpose of this paper is to review the effect of climate change on neglected tropical diseases including leishmaniasis, schistosomiasis, and lymphatic filariasis in the Eastern Mediterranean Region (EMR). A list of engine web searches was done; 280 full-text records were assessed for eligibility. Only 48 original records were included within the final selection for the review study. Most research results show an alteration of neglected diseases related to climate change influencing specifically the Eastern Mediterranean Region, in addition to the expectation of more effects at the level of vectors and reservoir whether its vector transmission route or its egg hatching and replication or even the survival of adult worms in the coming years. At the same time, not all articles related to the region interpret the direct or indirect effect of climate variations on these specific diseases. Although few studies were found describing some of climate change effects on neglected tropical diseases in the region, still, the region lacks research funding, technical, and mathematical model expertise regarding the direct effect of climate change on the ecosystems of these neglected tropical diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Intergovernmental Panel on Climate Change. (2015). Summary for policymakers. In Climate Change 2014: Mitigation of Climate Change: Working Group III Contribution to the IPCC Fifth Assessment Report (pp. 1–30). introduction, Cambridge: Cambridge University Press.

  2. Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, et al. (Ed.). IPCC 2012. Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of the intergovernmental panel on climate change. Cambridge, UK, and New York, NY, USA: Cambridge University Press; 2012.

  3. World Health Organization (WHO) febrauary, 2018. Climate change and human health. Available at: https://www.who.int/news-room/fact-sheets/detail/climate-change-and-health

  4. Field, C.B., V.R. Barros, D.J. Dokken, et al. 2014. Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY: Cambridge University Press.

  5. McIntyre KM, Setzkorn C, Hepworth PJ, et al. Systematic assessment of the climate sensitivity of important human and domestic animals pathogens in Europe. Sci Rep. 2017;7:7134.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. McMichael AJ. Globalization, climate change, and human health. N Engl J Med. 2013;368:1335–43.

    Article  CAS  PubMed  Google Scholar 

  7. Costello A, et al. Managing the health effects of climate change. Lancet. 2009;373:1693–733.

    Article  PubMed  Google Scholar 

  8. Watts N, et al. Health and climate change: policy responses to protect public health. Lancet. 2015;386:1861–914.

    Article  PubMed  Google Scholar 

  9. Bryson JM, Bishop-Williams KE, Berrang-Ford L, Nunez EC, Lwasa S, Namanya DB, Harper SL. Indigenous Health Adaptation To Climate Change Research Team. Neglected tropical diseases in the context of climate change in East Africa: a systematic scoping review. The American journal of tropical medicine and hygiene. 2020;102(6):1443–54.

    Article  PubMed  PubMed Central  Google Scholar 

  10. World Health Organization (WHO), 2006. The World Health Report 2006. Geneva, Switzerland: WHO. Nairobi Climate Change Conference - November 2006. Available at: https://unfccc.int/files/press/backgrounders/application/pdf/factsheet_africa.pdf

  11. World Health Organization (WHO), 2003. Climate change and human health - risks and responses. Summary. Available at: https://www.who.int/globalchange/summary/en/

  12. Al-Delaimy, W., Ramanathan, V., & Sánchez Sorondo, M. (2020). Health of people, health of planet and our responsibility: climate change, air pollution and health. This reference is a full text book of 33 chapters begins with ecosystem protection of living organism and ending with the moral trust of scientists towards their society in leading the effect of climate change on human health.

  13. B Yeh K, M Fair J, Smith W, Martinez Torres T, Lucas J, Monagin C, Winegar R, Fletcher J. Assessing climate change impact on ecosystems and infectious disease: important roles for genomic sequencing and a one health perspective. Tropic Med Infect Dis. 2020;5 (2):90.

  14. Abuzaid AA, Abdoon AM, Aldahan MA, Alzahrani AG, Alhakeem RF, Asiri AM, Alzahrani MH, Memish ZA. Cutaneous leishmaniasis in Saudi Arabia: a comprehensive overview. Vector-Borne and Zoonotic Diseases. 2017;17(10):673–84.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hotez PJ, Savioli L, Fenwick A. Neglected tropical diseases of the Middle East and North Africa: review of their prevalence, distribution, and opportunities for control. PLoS Negl Trop Dis. 2012;6(2):e1475.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Larsen M, Roepstorff A. Seasonal variation in development and survival of Ascaris suum and Trichuris suis eggs on pastures. Parasitology. 1999;119(2):209–22. https://doi.org/10.1017/S0031182099004503.

    Article  PubMed  Google Scholar 

  17. Gungoren B, Latipov R, Regallet G, Musabaev E. Effect of hygiene promotion on the risk of reinfection rate of intestinal parasites in children in rural Uzbekistan. Trans R Soc Trop Med Hyg. 2007;101(6):564–9. https://doi.org/10.1016/j.trrstmh.2007.02.011.

    Article  PubMed  Google Scholar 

  18. Pan C-T, Ritchie L, Hunter G. Reinfection and seasonal fluctuations of Ascaris lumbricoides among a group of children in an area where night soil is used. J Parasitol. 1954;40(5):603–8. https://doi.org/10.2307/3274027.

    Article  CAS  PubMed  Google Scholar 

  19. Seo B, Cho S, Choi J. Seasonal fluctuation of Ascaris reinfection incidences in a rural Korean population. Korean J Parsitol. 1979;17(1):11–8. https://doi.org/10.3347/kjp.1979.17.1.11.

    Article  Google Scholar 

  20. Gunawardena G, Karunaweera N, Ismail M. Wet days: are they better indicators of Ascaris infection levels? J Helminthol. 2004;78:305–10. https://doi.org/10.1079/JOH2004252.

    Article  CAS  PubMed  Google Scholar 

  21. McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS. Climate change 2001: impacts, adaptation and vulnerability. Contribution of working group II to the third assessment report of the intergovernmental panel of climate change (IPCC). Cambridge (UK): Cambridge University Press; 2001.

  22. Arene F. Ascaris suum: influence of embryonation temperature on the viabil- ity of the infective larva. J Therm Biol. 1986;11(1):9–15. https://doi.org/10.1016/0306-4565(86)90011-2.

    Article  Google Scholar 

  23. Kim M, Pyo K, Hwang Y, Park K, Hwang I, Chai J, Shin E. Effect of tem- perature on embryonation of Ascaris suum eggs in an environmental chamber. Korean J Parasitol. 2012;50(3):239–42. https://doi.org/10.3347/kjp.2012.50.3.239.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shoukry NM, Morsy TA. Arthropod borne diseases at Toshka. Upper Egypt World J Zool. 2011;6(2):126–33.

    Google Scholar 

  25. Hotez PJ, Savioli L, Fenwick A. Neglected tropical diseases of the Middle East and North Africa: review of their prevalence, distribution, and opportunities for control. PLoS Negl Trop Dis. 2012;6(2):e1475.

    Article  PubMed  PubMed Central  Google Scholar 

  26. World Health Organization (WHO), the Regional Office for the Eastern Mediterranean, May 2020. Key facts about leishmaniasis .Available at: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis.

  27. World Health Organization (WHO), the Regional Office for the Eastern Mediterranean, May 2021. Key facts about Schistosomiasis .Available at: http://www.emro.who.int/health-topics/schistosomiasis/. This report and key facts about schistosomiasis is up to date information about schistosomiasis infection.

  28. Al-Warid HS, Al-Saqur IM, Al-Tuwaijari SB, Zadawi KA. The distribution of cutaneous leishmaniasis in Iraq: demographic and climate aspects. Asian Biomedicine. 2017;11(3):255–60.

    Google Scholar 

  29. Pringle G. The sandflies (Phlebotominae) of Iraq. Bull Entomol Res. 1953;43(4):707–34.

    Article  Google Scholar 

  30. Al-Obaidi MJ, Abd Al-Hussein MY, Al-Saqur IM. Survey study on the prevalence of cutaneous leishmaniasis in Iraq. Iraqi Journal of Science. 2016;57(3C):2181–7.

    Google Scholar 

  31. Zivdari M, Hejazi SH, Mirhendi SH, Jafari R, Rastegar HA, Abtahi SM. Molecular identification of leishmania parasites in sand flies (Diptera, Psychodidae) of an endemic foci in Poldokhtar, Iran. Advanced biomedical research. 2018;7.

  32. Shirzadi MR, Mollalo A, Yaghoobi-Ershadi MR. Dynamic relations between incidence of zoonotic cutaneous leishmaniasis and climatic factors in Golestan Province. Iran Journal of arthropod-borne diseases. 2015;9(2):148.

    PubMed  Google Scholar 

  33. Charrahy Z, Yaghoobi‐Ershadi MR, Shirzadi MR, Akhavan AA, Rassi Y, Hosseini SZ, Webb NJ, Haque U, Bozorg Omid F, Hanafi‐Bojd AA. Climate change and its effect on the vulnerability to zoonotic cutaneous leishmaniasis in Iran. Transboundary and emerging diseases. 2021. This reference is up to date and is using MaxEnt model to study effect of climate change on cutaneous leishmaniasis ecological niches.

  34. el-Hassan AM, Zijlstra EE, Ismael A, Ghalib HW. Recent observations on the epidemiology of Kala-azar in the eastern and central states of the Sudan. Tropical and geographical medicine. 1995;47(4):151–6.

    CAS  PubMed  Google Scholar 

  35. Osman OF, Kager PA, Oskam L. Leishmaniasis in the Sudan: a literature review with emphasis on clinical aspects. Tropical Med Int Health. 2000;5(8):553–62.

    Article  CAS  Google Scholar 

  36. Pratlong F, Dereure J, Bucheton B, El-Saf S, Dessein A, Lanotte G, et al. Sudan: the possible original focus of visceral leishmaniasis. Parasitology. 2001;122:599–605.

    Article  CAS  PubMed  Google Scholar 

  37. Zijlstra EE, el-Hassan AM. Leishmaniasis in Sudan Visceral leishmaniasis. Trans R Soc Trop Med Hyg. 2001;95(Suppl 1):S27-58.

    Article  PubMed  Google Scholar 

  38. Sunyoto T, Potet J, Boelaert M. Visceral leishmaniasis in Somalia: a review of epidemiology and access to care. PLoS neglected tropical diseases. 2017;11(3):e0005231.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Marlet MVL, Wuillaume F, Jacquet D, Quispe KW, Dujardin JC, Boelaert M. A neglected disease of humans: a new focus of visceral leishmaniasis in Bakool, Somalia. Trans R Soc Trop Med Hyg. 2003;97:667–71. https://doi.org/10.1016/S0035-9203(03)80099-8.

    Article  CAS  PubMed  Google Scholar 

  40. Qayad MG. Health care services in transitional Somalia: challenges and recommendations. Bild An Int J Somali Stud. 2007;7:190–210.

    Google Scholar 

  41. Fuje MM, Ruiz Postigo JA EM& B-IR. Scaling up the control of visceral leishmaniasis in Somalia. 2011. p. Poster presented at 7th European Congress of Tropi.

  42. Elnaiem DEA. Ecology and control of the sand fly vectors of Leishmania donovani in East Africa, with special emphasis on Phlebotomus orientalis. J Vector Ecol. 2011;36:23–31.

    Article  Google Scholar 

  43. Beyrer C, Villar JC, Suwanvanichkij V, Singh S, Baral SD, Mills EJ. Neglected diseases, civil conflicts, and the right to health. Lancet. 2007;370:619–27. https://doi.org/10.1016/S0140-6736(07)61301-4.

    Article  PubMed  Google Scholar 

  44. Gryseels B, Polman K, Clerinx J, Kestens L. Human schistosomiasis. The Lancet. 2006;368(9541):1106–18.

    Article  Google Scholar 

  45. Lotfy WM. Climate change and epidemiology of human parasitosis in Egypt: a review. J Adv Res. 2014;5(6):607–13.

    Article  PubMed  Google Scholar 

  46. Patz JA, Graczyk TK, Geller N, Vittor AY. Effects of environmental change on emerging parasitic diseases. Int J Parasitol. 2000;30(12–13):1395–405.

    Article  CAS  PubMed  Google Scholar 

  47. Sady H, Al-Mekhlafi HM, Mahdy MA, Lim YA, Mahmud R, Surin J. Prevalence and associated factors of schistosomiasis among children in Yemen: implications for an effective control programme. PLoS Negl Trop Dis. 2013 22;7(8):e2377.

  48. Sallam JA, Wright SG. Schistosomiasis mansoni in Yemen: a review. Ann Saudi Med. 1992;12(3):294–6.

    Article  CAS  PubMed  Google Scholar 

  49. Simonsen PE, Derua YA, Magesa SM, Pedersen EM, Stensgaard AS, Malecela MN, Kisinza WN: Lymphatic filariasis control in Tanga Region, Tanzania: status after eight rounds of mass drug administration.

  50. Halliday A, Guimaraes AF, Tyrer HE, Metuge H, Patrick C, Arnaud KO, Kwenti T, Forsbrook G, Steven A, Cook D, Enyong P, Wanji S, Taylor MJ, Turner JD. A murine macrofilaricide pre-clinical screening model for onchocerciasis and lymphatic filariasis. Parasit Vectors. 2014;7(1):472.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. World Health Organization (WHO), 2021: key facts about lymphatic filariasis: progress report. Geneva. .Available at : https://www.who.int/news-room/factsheets/detail/lymphatic-filariasis

  52. Ramzy RM, Goldman AS, Kamal HA. Defining the cost of the Egyptian lymphatic filariasis elimination programme. Filaria J. 2005;4:7.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ramzy RM, Kamal HA, Hassan MA, Haggag AA. Elimination of lymphatic filariasis as a public health problem from the Arab Republic of Egypt. Acta tropica. 2019;199:105121 (This paper describes the steps of elimination LF in Egypt and the application of MDA rounds for population).

    Article  PubMed  Google Scholar 

  54. World Health Organization, March 2018. Neglected tropical diseases. Egypt: first country in Eastern Mediterranean region to eliminate lymphatic filariasis. Availavle at: https://www.who.int/neglected_diseases/news/Egypt_first_EMRO_country_eliminate_LF/en/

  55. Ramzy RM, Al Kubati AS. Progress towards elimination of lymphatic filariasis in the Eastern Mediterranean Region. International Health. 2021;13(Supplement_1):S28-32.

    Article  Google Scholar 

  56. Coates SJ, Norton SA. The effects of climate change on infectious diseases with cutaneous manifestations. Int J Women's Dermatol. 2020

  57. Pedersen UB, Stendel M, Midzi N, Mduluza T, Soko W, Stensgaard AS, Vennervald BJ, Mukaratirwa S, Kristensen TK. Modelling climate change impact on the spatial distribution of fresh water snails hosting trematodes in Zimbabwe. Parasit Vectors. 2014;7(1):1–2.

    Article  Google Scholar 

  58. Stensgaard AS, Utzinger J, Vounatsou P, Hürlimann E, Schur N, Saarnak CF, Simoonga C, Mubita P, Kabatereine NB, Tchuenté LA, Rahbek C. Large-scale determinants of intestinal schistosomiasis and intermediate host snail distribution across Africa: does climate matter? Acta Trop. 2013;128(2):378–90.

    Article  PubMed  Google Scholar 

  59. Pullan RL, Brooker SJ. The global limits and population at risk of soil-transmitted helminth infections in 2010. Parasit Vectors. 2012;5(1):1–4.

    Article  Google Scholar 

  60. Brooker S, Clements AC, Bundy DA. Global epidemiology, ecology and control of soil-transmitted helminth infections. Adv Parasitol. 2006;62:221–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Okulewicz A. The impact of global climate change on the spread of parasitic nematodes. Annals of Parasitology. 2017;63(1):15–20.

    PubMed  Google Scholar 

  62. Hernandez AD, Poole A, Cattadori IM. Climate changes influence free-living stages of soil-transmitted parasites of European rabbits. Glob Change Biol. 2013;19(4):1028–42.

    Article  Google Scholar 

  63. Weaver HJ, Hawdon JM, Hoberg EP. Soil-transmitted helminthiases: implications of climate change and human behavior. Trends Parasitol. 2010;26(12):574–81.

    Article  PubMed  Google Scholar 

  64. Mokhtari M, Miri M, Nikoonahad A, Jalilian A, Naserifar R, Ghaffari HR, Kazembeigi F. Cutaneous leishmaniasis prevalence and morbidity based on environmental factors in Ilam, Iran: spatial analysis and land use regression models. Acta Trop. 2016;163:90–7.

    Article  PubMed  Google Scholar 

  65. Blum AJ, Hotez PJ. Global “worming”: climate change and its projected general impact on human helminth infections.

  66. Dhimal M, Ahrens B, Kuch U. Climate change and spatiotemporal distributions of vector-borne diseases in Nepal–a systematic synthesis of literature. PloS one. 2015;10(6):e0129869.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Slater H, Michael E. Predicting the current and future potential distributions of lymphatic filariasis in Africa using maximum entropy ecological niche modelling. PloS one. 2012;7(2):e32202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Akinwale OP, Ajayi MB, Akande DO, Gyang PV, Adeleke MA, Adeneye AK, Adebayo MO, Dike AA. Urinary schistosomiasis around Oyan Reservoir, Nigeria: twenty years after the first outbreak. Iran J Public Health. 2010;39(1):92.

    PubMed  PubMed Central  Google Scholar 

  69. De Clercq D, Vercruysse J, Sène M, Seck I, Sall CS, Ly A, Southgate VR. The effects of irrigated agriculture on the transmission of urinary schistosomiasis in the middle and upper valleys of the Senegal River basin. Ann Trop Med Parasitol. 2000;94(6):581–90.

    Article  PubMed  Google Scholar 

  70. Fazal O, Hotez PJ. NTDs in the age of urbanization, climate change, and conflict: Karachi, Pakistan as a case study. PLOS Neglected Tropical Diseases. 2020;14(11):e0008791.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Schorscher J, Goris M. Incrimination of Phlebotomus (Larroussius) orientalis as a vector of visceral leishmaniasis in western Upper Nile Province, southern Sudan. Trans R Soc Trop Med Hyg. 1992;86:622–3.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed K. Al-Delaimy.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of Interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Climate Change and Health

This article is part of the Topical Collection on Global Environmental Health and Sustainability

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Delaimy, A.K. The Prospective Effects of Climate Change on Neglected Tropical Diseases in the Eastern Mediterranean Region: a Review. Curr Envir Health Rpt 9, 315–323 (2022). https://doi.org/10.1007/s40572-022-00339-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-022-00339-7

Keywords

Navigation