Skip to main content
Log in

Therapeutic Drug Monitoring in the Treatment of Tuberculosis: An Update

  • Current Opinion
  • Published:
Drugs Aims and scope Submit manuscript

An Erratum to this article was published on 04 June 2014

Abstract

Tuberculosis (TB) is the world’s second leading infectious killer. Cases of multidrug-resistant (MDR-TB) and extremely drug-resistant (XDR-TB) have increased globally. Therapeutic drug monitoring (TDM) remains a standard clinical technique for using plasma drug concentrations to determine dose. For TB patients, TDM provides objective information for the clinician to make informed dosing decisions. Some patients are slow to respond to treatment, and TDM can shorten the time to response and to treatment completion. Normal plasma concentration ranges for the TB drugs have been defined. For practical reasons, only one or two samples are collected post-dose. A 2-h post-dose sample approximates the peak serum drug concentration (Cmax) for most TB drugs. Adding a 6-h sample allows the clinician to distinguish between delayed absorption and malabsorption. TDM requires that samples are promptly centrifuged, and that the serum is promptly harvested and frozen. Isoniazid and ethionamide, in particular, are not stable in human serum at room temperature. Rifampicin is stable for more than 6 h under these conditions. Since our 2002 review, several papers regarding TB drug pharmacokinetics, pharmacodynamics, and TDM have been published. Thus, we have better information regarding the concentrations required for effective TB therapy. In vitro and animal model data clearly show concentration responses for most TB drugs. Recent studies emphasize the importance of rifamycins and pyrazinamide as sterilizing agents. A strong argument can be made for maximizing patient exposure to these drugs, short of toxicity. Further, the very concept behind ‘minimal inhibitory concentration’ (MIC) implies that one should achieve concentrations above the minimum in order to maximize response. Some, but not all clinical data are consistent with the utility of this approach. The low ends of the TB drug normal ranges set reasonable ‘floors’ above which plasma concentrations should be maintained. Patients with diabetes and those infected with HIV have a particular risk for poor drug absorption, and for drug–drug interactions. Published guidelines typically describe interactions between two drugs, whereas the clinical situation often is considerably more complex. Under ‘real–life’ circumstances, TDM often is the best available tool for sorting out these multi-drug interactions, and for providing the patient safe and adequate doses. Plasma concentrations cannot explain all of the variability in patient responses to TB treatment, and cannot guarantee patient outcomes. However, combined with clinical and bacteriological data, TDM can be a decisive tool, allowing clinicians to successfully treat even the most complicated TB patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Health Organization. Global TB report. Geneva: World Health Organization; 2013.

  2. Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis. Drugs. 2002;62(15):2169–83.

    CAS  PubMed  Google Scholar 

  3. Multidrug-resistant TB (MDR-TB): 2013 update. Geneva: World Health Organization; 2013.

  4. East African-British Medical Research Councils. Controlled clinical trial of four short-course (6-month) regimens of chemotherapy for treatment of pulmonary tuberculosis. Third report. Lancet. 1974;2(7875):237–40.

  5. Singapore Tuberculosis Service-British Medical Research Council. Clinical trial of six-month and four-month regimens of chemotherapy in the treatment of pulmonary tuberculosis: the results up to 30 months. Tubercle. 1981;62(2):95–102.

  6. British Thoracic Association. A controlled trial of six months chemotherapy in pulmonary tuberculosis. Second report: results during the 24 months after the end of chemotherapy. Am Rev Respir Dis. 1982;126(3):460–2.

  7. Singapore Tuberculosis Service/British Medical Research Council. Long-term follow-up of a clinical trial of six-month and four-month regimens of chemotherapy in the treatment of pulmonary tuberculosis. Am Rev Respir Dis. 1986;133(5):779–83.

  8. Fox W, Ellard GA, Mitchison DA. Studies on the treatment of tuberculosis undertaken by the British Medical Research Council tuberculosis units, 1946–1986, with relevant subsequent publications. Int J Tuberc Lung Dis. 1999;3(10 Suppl 2):S231–79.

    CAS  PubMed  Google Scholar 

  9. American Thoracic Society. Targeted tuberculin testing and treatment of latent tuberculosis infection. MMWR Recomm Rep. 2000;49(RR-6):1–51.

  10. Sterling TR, Villarino ME, Borisov AS, et al. Three months of rifapentine and isoniazid for latent tuberculosis infection. N Engl J Med. 2011;365(23):2155–66.

    CAS  PubMed  Google Scholar 

  11. Blumberg HM, Burman WJ, Chaisson RE, et al. American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America: treatment of tuberculosis. Am J Respir Crit Care Med. 2003;167(4):603–62.

    PubMed  Google Scholar 

  12. Somoskovi A, Parsons LM, Salfinger M. The molecular basis of resistance to isoniazid, rifampin, and pyrazinamide in Mycobacterium tuberculosis. Respir Res. 2001;2(3):164–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Zhang Y, Mitchison D. The curious characteristics of pyrazinamide: a review. Int J Tuberc Lung Dis. 2003;7(1):6–21.

    CAS  PubMed  Google Scholar 

  14. Zimhony O, Cox JS, Welch JT, et al. Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis. Nat Med. 2000;6(9):1043–7.

    CAS  PubMed  Google Scholar 

  15. Zhang Y, Wade MM, Scorpio A, et al. Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. J Antimicrob Chemother. 2003;52(5):790–5.

    PubMed  Google Scholar 

  16. Mitchison DA. Role of individual drugs in the chemotherapy of tuberculosis. Int J Tuberc Lung Dis. 2000;4(9):796–806.

    CAS  PubMed  Google Scholar 

  17. Hernandez-Pando R, Jeyanathan M, Mengistu G, et al. Persistence of DNA from Mycobacterium tuberculosis in superficially normal lung tissue during latent infection. Lancet. 2000;356(9248):2133–8.

    CAS  PubMed  Google Scholar 

  18. Bishai WR. Rekindling old controversy on elusive lair of latent tuberculosis. Lancet. 2000;356(9248):2113–4.

    CAS  PubMed  Google Scholar 

  19. Flynn JL, Chan J. Tuberculosis: latency and reactivation. Infect Immun. 2001;69(7):4195–201.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Lenaerts AJ, Hoff D, Aly S, et al. Location of persisting mycobacteria in a Guinea pig model of tuberculosis revealed by r207910. Antimicrob Agents Chemother. 2007;51(9):3338–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Gomez JE, McKinney JD. M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis (Edinb). 2004;84(1–2):29–44.

  22. Ruslami R, Nijland H, Aarnoutse R, et al. Evaluation of high- versus standard-dose rifampin in Indonesian patients with pulmonary tuberculosis. Antimicrob Agents Chemother. 2006;50(2):822–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Kreis B, Pretet S, Birenbaum J, et al. Two three-month treatment regimens for pulmonary tuberculosis. Bull Int Union Tuberc. 1976;51(1):71–5.

    CAS  PubMed  Google Scholar 

  24. Diacon AH, Patientia RF, Venter A, et al. Early bactericidal activity of high-dose rifampin in patients with pulmonary tuberculosis evidenced by positive sputum smears. Antimicrob Agents Chemother. 2007;51(8):2994–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Steingart KR, Jotblad S, Robsky K, et al. Higher-dose rifampin for the treatment of pulmonary tuberculosis: a systematic review. Int J Tuberc Lung Dis. 2011;15(3):305–16.

    CAS  PubMed  Google Scholar 

  26. Burman WJ, Gallicano K, Peloquin C. Comparative pharmacokinetics and pharmacodynamics of the rifamycin antibacterials. Clin Pharmacokinet. 2001;40(5):327–41.

    CAS  PubMed  Google Scholar 

  27. Peloquin CA. Using therapeutic drug monitoring to dose the antimycobacterial drugs. Clin Chest Med. 1997;18(1):79–87.

    CAS  PubMed  Google Scholar 

  28. Reported Tuberculosis in the United States, 2012. 2013; Available from http://www.cdc.gov/tb/statistics/reports/2012/pdf/report2012.pdf.

  29. Heysell SK, Moore JL, Keller SJ, Houpt ER. Therapeutic drug monitoring for slow response to tuberculosis treatment in a state control program, Virginia, USA. Emerg Infect Dis. 2010;16(10):1546–53.

    PubMed Central  PubMed  Google Scholar 

  30. Magis-Escurra C, van den Boogaard J, Ijdema D, et al. Therapeutic drug monitoring in the treatment of tuberculosis patients. Pulm Pharmacol Ther. 2012;25(1):83–6.

    CAS  PubMed  Google Scholar 

  31. Babalik A, Mannix S, Francis D, Menzies D. Therapeutic drug monitoring in the treatment of active tuberculosis. Can Respir J. 2011;18(4):225–9.

    PubMed Central  PubMed  Google Scholar 

  32. Holland DP, Hamilton CD, Weintrob AC, et al. Therapeutic drug monitoring of antimycobacterial drugs in patients with both tuberculosis and advanced human immunodeficiency virus infection. Pharmacotherapy. 2009;29(5):503–10.

    CAS  PubMed  Google Scholar 

  33. Van Tongeren L, Nolan S, Cook VJ, et al. Therapeutic drug monitoring in the treatment of tuberculosis: a retrospective analysis. Int J Tuberc Lung Dis. 2013;17(2):221–4.

    PubMed  Google Scholar 

  34. Li J, Burzynski JN, Lee YA, et al. Use of therapeutic drug monitoring for multidrug-resistant tuberculosis patients. Chest. 2004;126(6):1770–6.

    PubMed  Google Scholar 

  35. Ray J, Gardiner I, Marriott D. Managing antituberculosis drug therapy by therapeutic drug monitoring of rifampicin and isoniazid. Intern Med J. 2003;33(5–6):229–34.

    CAS  PubMed  Google Scholar 

  36. Heysell SK, Moore JL, Staley D, et al. Early therapeutic drug monitoring for isoniazid and rifampin among diabetics with newly diagnosed tuberculosis in Virginia, USA. Tuberc Res Treat. 2013;2013.

  37. Prahl JB, Johansen IS, Frimodt-Møller N, Andersen AB. Clinical significance of 2-hour plasma concentrations of first-line tuberculosis drugs (abstract). Interscience Conference on Antimicrobial Agents and Chemotherapy; Denver, CO2013.

  38. A controlled trial of six months chemotherapy in pulmonary tuberculosis. First Report: results during chemotherapy. British Thoracic Association. Br J Dis Chest. 1981;75(2):141–53.

  39. Mehta JB, Shantaveerapa H, Byrd RP Jr, et al. Utility of rifampin blood levels in the treatment and follow-up of active pulmonary tuberculosis in patients who were slow to respond to routine directly observed therapy. Chest. 2001;120(5):1520–4.

    CAS  PubMed  Google Scholar 

  40. Kimerling ME, Phillips P, Patterson P, et al. Low serum antimycobacterial drug levels in non-HIV-infected tuberculosis patients. Chest. 1998;113(5):1178–83.

    CAS  PubMed  Google Scholar 

  41. Yew WW. Therapeutic drug monitoring in antituberculosis chemotherapy. Ther Drug Monit. 1998;20(5):469–72.

    CAS  PubMed  Google Scholar 

  42. McIlleron H, Wash P, Burger A, et al. Determinants of rifampin, isoniazid, pyrazinamide, and ethambutol pharmacokinetics in a cohort of tuberculosis patients. Antimicrob Agents Chemother. 2006;50(4):1170–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Chideya S, Winston CA, Peloquin CA, et al. Isoniazid, rifampin, ethambutol, and pyrazinamide pharmacokinetics and treatment outcomes among a predominantly HIV-infected cohort of adults with tuberculosis from Botswana. Clin Infect Dis. 2009;48(12):1685–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Babalik A, Ulus IH, Bakirci N, et al. Pharmacokinetics and serum concentrations of antimycobacterial drugs in adult Turkish patients. Int J Tuberc Lung Dis. 2013;17(11):1442–7.

    CAS  PubMed  Google Scholar 

  45. Sprague DA, Ensom MH. Limited-sampling strategies for anti-infective agents: systematic review. Can J Hosp Pharm. 2009;62(5):392–401.

    PubMed Central  PubMed  Google Scholar 

  46. Pranger AD, Kosterink JG, van Altena R, et al. Limited-sampling strategies for therapeutic drug monitoring of moxifloxacin in patients with tuberculosis. Ther Drug Monit. 2011;33(3):350–4.

    CAS  PubMed  Google Scholar 

  47. Alffenaar JW, Kosterink JG, van Altena R, et al. Limited sampling strategies for therapeutic drug monitoring of linezolid in patients with multidrug-resistant tuberculosis. Ther Drug Monit. 2010;32(1):97–101.

    CAS  PubMed  Google Scholar 

  48. Parker SP, Cubitt WD. The use of the dried blood spot sample in epidemiological studies. J Clin Pathol. 1999;52(9):633–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Edelbroek PM, van der Heijden J, Stolk LM. Dried blood spot methods in therapeutic drug monitoring: methods, assays, and pitfalls. Ther Drug Monit. 2009;31(3):327–36.

    PubMed  Google Scholar 

  50. Vu DH, Bolhuis MS, Koster RA, et al. Dried blood spot analysis for therapeutic drug monitoring of linezolid in patients with multidrug-resistant tuberculosis. Antimicrob Agents Chemother. 2012;56(11):5758–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Vu DH, Koster RA, Alffenaar JW, et al. Determination of moxifloxacin in dried blood spots using LC-MS/MS and the impact of the hematocrit and blood volume. J Chromatogr B Analyt Technol Biomed Life Sci. 2011;879(15–16):1063–70.

    CAS  PubMed  Google Scholar 

  52. Vu DH, Koster RA, Bolhuis MS, et al. Simultaneous determination of rifampicin, clarithromycin and their metabolites in dried blood spots using LC-MS/MS. Talanta. 2014;121:9–17.

    CAS  PubMed  Google Scholar 

  53. Burhan E, Ruesen C, Ruslami R, et al. Isoniazid, rifampin, and pyrazinamide plasma concentrations in relation to treatment response in Indonesian pulmonary tuberculosis patients. Antimicrob Agents Chemother. 2013;57(8):3614–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Pasipanodya JG, McIlleron H, Burger A, et al. Serum drug concentrations predictive of pulmonary tuberculosis outcomes. J Infect Dis. 2013;208(9):1464–73.

    CAS  PubMed  Google Scholar 

  55. Weiner M, Burman W, Vernon A, et al. Low isoniazid concentrations and outcome of tuberculosis treatment with once-weekly isoniazid and rifapentine. Am J Respir Crit Care Med. 2003;167(10):1341–7.

    PubMed  Google Scholar 

  56. Weiner M, Benator D, Burman W, et al. Association between acquired rifamycin resistance and the pharmacokinetics of rifabutin and isoniazid among patients with HIV and tuberculosis. Clin Infect Dis. 2005;40(10):1481–91.

    CAS  PubMed  Google Scholar 

  57. Chigutsa E, Pasipanodya J, Visser ME, et al. Multivariate adaptive regression splines analysis of the effect of drug concentration and MIC on sterilizing activity in patients on multidrug therapy (abstract). Clinical Pharmacology of Tuberculosis Drugs; Denver, CO2013.

  58. Srivastava S, Gumbo T. In vitro and in vivo modeling of tuberculosis drugs and its impact on optimization of doses and regimens. Curr Pharm Des. 2011;17(27):2881–8.

    CAS  PubMed  Google Scholar 

  59. Pasipanodya J, Gumbo T. An oracle: antituberculosis pharmacokinetics-pharmacodynamics, clinical correlation, and clinical trial simulations to predict the future. Antimicrob Agents Chemother. 2011;55(1):24–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Nuermberger E, Grosset J. Pharmacokinetic and pharmacodynamic issues in the treatment of mycobacterial infections. Eur J Clin Microbiol Infect Dis. 2004;23(4):243–55.

    CAS  PubMed  Google Scholar 

  61. Davies GR, Nuermberger EL. Pharmacokinetics and pharmacodynamics in the development of anti-tuberculosis drugs. Tuberculosis (Edinb). 2008;88(Suppl 1):S65–74.

    CAS  Google Scholar 

  62. Ahmad Z, Fraig MM, Bisson GP, et al. Dose-dependent activity of pyrazinamide in animal models of intracellular and extracellular tuberculosis infections. Antimicrob Agents Chemother. 2011;55(4):1527–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Gumbo T, Louie A, Deziel MR, et al. Selection of a moxifloxacin dose that suppresses drug resistance in Mycobacterium tuberculosis, by use of an in vitro pharmacodynamic infection model and mathematical modeling. J Infect Dis. 2004;190(9):1642–51.

    CAS  PubMed  Google Scholar 

  64. Nuermberger E. Using animal models to develop new treatments for tuberculosis. Semin Respir Crit Care Med. 2008;29(5):542–51.

    PubMed  Google Scholar 

  65. Pasipanodya J, Srivastava S, Gumbo T. New susceptibility breakpoints and the regional variability of MIC distribution in Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother. 2012;56(10):5428.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Gumbo T, Louie A, Deziel MR, et al. Concentration-dependent Mycobacterium tuberculosis killing and prevention of resistance by rifampin. Antimicrob Agents Chemother. 2007;51(11):3781–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Gumbo T, Dona CS, Meek C, Leff R. Pharmacokinetics-pharmacodynamics of pyrazinamide in a novel in vitro model of tuberculosis for sterilizing effect: a paradigm for faster assessment of new antituberculosis drugs. Antimicrob Agents Chemother. 2009;53(8):3197–204.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Jayaram R, Gaonkar S, Kaur P, et al. Pharmacokinetics-pharmacodynamics of rifampin in an aerosol infection model of tuberculosis. Antimicrob Agents Chemother. 2003;47(7):2118–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Jayaram R, Shandil RK, Gaonkar S, et al. Isoniazid pharmacokinetics-pharmacodynamics in an aerosol infection model of tuberculosis. Antimicrob Agents Chemother. 2004;48(8):2951–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Boulanger C, Hollender E, Farrell K, et al. Pharmacokinetic evaluation of rifabutin in combination with lopinavir-ritonavir in patients with HIV infection and active tuberculosis. Clin Infect Dis. 2009;49(9):1305–11.

    CAS  PubMed  Google Scholar 

  71. Pasipanodya JG, Gumbo T. Clinical and toxicodynamic evidence that high-dose pyrazinamide is not more hepatotoxic than the low doses currently used. Antimicrob Agents Chemother. 2010;54(7):2847–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Talbert Estlin KA, Sadun AA. Risk factors for ethambutol optic toxicity. Int Ophthalmol. 2010;30(1):63–72.

    PubMed  Google Scholar 

  73. Hasenbosch RE, Alffenaar JW, Koopmans SA, et al. Ethambutol-induced optical neuropathy: risk of overdosing in obese subjects. Int J Tuberc Lung Dis. 2008;12(8):967–71.

    CAS  PubMed  Google Scholar 

  74. Chang KC, Leung CC, Grosset J, Yew WW. Treatment of tuberculosis and optimal dosing schedules. Thorax. 2011;66(11):997–1007.

    PubMed  Google Scholar 

  75. Srivastava S, Pasipanodya JG, Meek C, et al. Multidrug-resistant tuberculosis not due to noncompliance but to between-patient pharmacokinetic variability. J Infect Dis. 2011;204(12):1951–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Peloquin CA. Tuberculosis drug serum levels. Clin Infect Dis. 2001;33(4):584–5.

    CAS  PubMed  Google Scholar 

  77. Peloquin CA. Pharmacological issues in the treatment of tuberculosis. Ann NY Acad Sci. 2001;953:157–64.

    CAS  PubMed  Google Scholar 

  78. Holdiness MR. Clinical pharmacokinetics of the antituberculosis drugs. Clin Pharmacokinet. 1984;9(6):511–44.

    CAS  PubMed  Google Scholar 

  79. Peloquin C. Antituberculosis drugs: pharmacokinetics. In: LB H, editor. Drug susceptibility in the chemotherapy of mycobacterial infections. Boca Raton, FL: CRC Press; 1991. p. 89–122.

  80. Dooley KE, Chaisson RE. Tuberculosis and diabetes mellitus: convergence of two epidemics. Lancet Infect Dis. 2009;9(12):737–46.

    PubMed Central  PubMed  Google Scholar 

  81. Dooley KE, Tang T, Golub JE, et al. Impact of diabetes mellitus on treatment outcomes of patients with active tuberculosis. Am J Trop Med Hyg. 2009;80(4):634–9.

    PubMed Central  PubMed  Google Scholar 

  82. Alisjahbana B, Sahiratmadja E, Nelwan EJ, et al. The effect of type 2 diabetes mellitus on the presentation and treatment response of pulmonary tuberculosis. Clin Infect Dis. 2007;45(4):428–35.

    PubMed  Google Scholar 

  83. Dostalek M, Akhlaghi F, Puzanovova M. Effect of diabetes mellitus on pharmacokinetic and pharmacodynamic properties of drugs. Clin Pharmacokinet. 2012;51(8):481–99.

    CAS  PubMed  Google Scholar 

  84. Ruslami R, Nijland HM, Adhiarta IG, et al. Pharmacokinetics of antituberculosis drugs in pulmonary tuberculosis patients with type 2 diabetes. Antimicrob Agents Chemother. 2010;54(3):1068–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Nijland HM, Ruslami R, Stalenhoef JE, et al. Exposure to rifampicin is strongly reduced in patients with tuberculosis and type 2 diabetes. Clin Infect Dis. 2006;43(7):848–54.

    CAS  PubMed  Google Scholar 

  86. Diagnostic Standards and Classification of Tuberculosis in Adults and Children. This official statement of the American Thoracic Society and the Centers for Disease Control and Prevention was adopted by the ATS Board of Directors, July 1999. This statement was endorsed by the Council of the Infectious Disease Society of America, September 1999. Am J Respir Crit Care Med. 2000;161(4 Pt 1):1376–95.

  87. Kotler DP, Gaetz HP, Lange M, et al. Enteropathy associated with the acquired immunodeficiency syndrome. Ann Intern Med. 1984;101(4):421–8.

    CAS  PubMed  Google Scholar 

  88. Gillin JS, Shike M, Alcock N, et al. Malabsorption and mucosal abnormalities of the small intestine in the acquired immunodeficiency syndrome. Ann Intern Med. 1985;102(5):619–22.

    CAS  PubMed  Google Scholar 

  89. Peloquin CA, MacPhee AA, Berning SE. Malabsorption of antimycobacterial medications. N Engl J Med. 1993;329(15):1122–3.

    CAS  PubMed  Google Scholar 

  90. Gordon SM, Horsburgh CR, Peloquin CA, et al. Low serum levels of oral antimycobacterial agents in patients with disseminated Mycobacterium avium complex disease. J Infect Dis. 1993;168(6):1559–62.

    CAS  PubMed  Google Scholar 

  91. Peloquin CA, Nitta AT, Burman WJ, et al. Low antituberculosis drug concentrations in patients with AIDS. Ann Pharmacother. 1996;30(9):919–25.

    CAS  PubMed  Google Scholar 

  92. Sahai J, Gallicano K, Swick L, et al. Reduced plasma concentrations of antituberculosis drugs in patients with HIV infection. Ann Intern Med. 1997;127(4):289–93.

    CAS  PubMed  Google Scholar 

  93. Gurumurthy P, Ramachandran G, Hemanth Kumar AK, et al. Decreased bioavailability of rifampin and other antituberculosis drugs in patients with advanced human immunodeficiency virus disease. Antimicrob Agents Chemother. 2004;48(11):4473–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Gurumurthy P, Ramachandran G, Hemanth Kumar AK, et al. Malabsorption of rifampin and isoniazid in HIV-infected patients with and without tuberculosis. Clin Infect Dis. 2004;38(2):280–3.

    CAS  PubMed  Google Scholar 

  95. Taylor B, Smith PJ. Does AIDS impair the absorption of antituberculosis agents? Int J Tuberc Lung Dis. 1998;2(8):670–5.

    CAS  PubMed  Google Scholar 

  96. Peloquin CA, Berning SE, Huitt GA, Iseman MD. AIDS and TB drug absorption. Int J Tuberc Lung Dis. 1999;3(12):1143–4.

    CAS  PubMed  Google Scholar 

  97. McIlleron H, Rustomjee R, Vahedi M, et al. Reduced antituberculosis drug concentrations in HIV-infected patients who are men or have low weight: implications for international dosing guidelines. Antimicrob Agents Chemother. 2012;56(6):3232–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Narita M, Hisada M, Thimmappa B, et al. Tuberculosis recurrence: multivariate analysis of serum levels of tuberculosis drugs, human immunodeficiency virus status, and other risk factors. Clin Infect Dis. 2001;32(3):515–7.

    CAS  PubMed  Google Scholar 

  99. Kaplan JE, Benson C, Holmes KK, et al. Guidelines for prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: recommendations from CDC, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America. MMWR Recomm Rep. 2009;58(Rr-4):1–207.

    Google Scholar 

  100. Burman WJ, Gallicano K, Peloquin C. Therapeutic implications of drug interactions in the treatment of human immunodeficiency virus-related tuberculosis. Clin Infect Dis. 1999;28(3):419–29.

    CAS  PubMed  Google Scholar 

  101. Narita M, Stambaugh JJ, Hollender ES, et al. Use of rifabutin with protease inhibitors for human immunodeficiency virus-infected patients with tuberculosis. Clin Infect Dis. 2000;30(5):779–83.

    CAS  PubMed  Google Scholar 

  102. Weiner M, Benator D, Peloquin CA, et al. Evaluation of the drug interaction between rifabutin and efavirenz in patients with HIV infection and tuberculosis. Clin Infect Dis. 2005;41(9):1343–9.

    CAS  PubMed  Google Scholar 

  103. Schwiesow JN, Iseman MD, Peloquin CA. Concomitant use of voriconazole and rifabutin in a patient with multiple infections. Pharmacotherapy. 2008;28(8):1076–80.

    CAS  PubMed  Google Scholar 

  104. Benator DA, Weiner MH, Burman WJ, et al. Clinical evaluation of the nelfinavir–rifabutin interaction in patients with tuberculosis and human immunodeficiency virus infection. Pharmacotherapy. 2007;27(6):793–800.

    CAS  PubMed  Google Scholar 

  105. Durant J, Clevenbergh P, Garraffo R, et al. Importance of protease inhibitor plasma levels in HIV-infected patients treated with genotypic-guided therapy: pharmacological data from the Viradapt Study. AIDS. 2000;14(10):1333–9.

    CAS  PubMed  Google Scholar 

  106. Angel JB, Khaliq Y, Monpetit ML, et al. An argument for routine therapeutic drug monitoring of HIV-1 protease inhibitors during pregnancy. AIDS. 2001;15(3):417–9.

    CAS  PubMed  Google Scholar 

  107. Back D, Gatti G, Fletcher C, et al. Therapeutic drug monitoring in HIV infection: current status and future directions. AIDS. 2002;16(Suppl 1):S5–37.

    CAS  PubMed  Google Scholar 

  108. Cengiz K. Increased incidence of tuberculosis in patients undergoing hemodialysis. Nephron. 1996;73(3):421–4.

    CAS  PubMed  Google Scholar 

  109. Hu HY, Wu CY, Huang N, et al. Increased risk of tuberculosis in patients with end-stage renal disease: a population-based cohort study in Taiwan, a country of high incidence of end-stage renal disease. Epidemiol Infect. 2014:142(1):191–9.

  110. Chia S, Karim M, Elwood RK, FitzGerald JM. Risk of tuberculosis in dialysis patients: a population-based study. Int J Tuberc Lung Dis. 1998;2(12):989–91.

    CAS  PubMed  Google Scholar 

  111. Cuss FM, Carmichael DJ, Linington A, Hulme B. Tuberculosis in renal failure: a high incidence in patients born in the Third World. Clin Nephrol. 1986;25(3):129–33.

    CAS  PubMed  Google Scholar 

  112. Malone RS, Fish DN, Spiegel DM, et al. The effect of hemodialysis on isoniazid, rifampin, pyrazinamide, and ethambutol. Am J Respir Crit Care Med. 1999;159(5 Pt 1):1580–4.

    CAS  PubMed  Google Scholar 

  113. Malone RS, Fish DN, Spiegel DM, et al. The effect of hemodialysis on cycloserine, ethionamide, para-aminosalicylate, and clofazimine. Chest. 1999;116(4):984–90.

    CAS  PubMed  Google Scholar 

  114. Peloquin CA, Jaresko GS, Yong CL, et al. Population pharmacokinetic modeling of isoniazid, rifampin, and pyrazinamide. Antimicrob Agents Chemother. 1997;41(12):2670–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Peloquin CA, Namdar R, Dodge AA, Nix DE. Pharmacokinetics of isoniazid under fasting conditions, with food, and with antacids. Int J Tuberc Lung Dis. 1999;3(8):703–10.

    CAS  PubMed  Google Scholar 

  116. Pasipanodya JG, Srivastava S, Gumbo T. Meta-analysis of clinical studies supports the pharmacokinetic variability hypothesis for acquired drug resistance and failure of antituberculosis therapy. Clin Infect Dis. 2012;55(2):169–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Cho HJ, Koh WJ, Ryu YJ, et al. Genetic polymorphisms of NAT2 and CYP2E1 associated with antituberculosis drug-induced hepatotoxicity in Korean patients with pulmonary tuberculosis. Tuberculosis (Edinb). 2007;87(6):551–6.

    CAS  Google Scholar 

  118. Ben Mahmoud L, Ghozzi H, Kamoun A, et al. Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatotoxicity in Tunisian patients with tuberculosis. Pathol Biol (Paris). 2012;60(5):324–30.

    CAS  Google Scholar 

  119. Ohno M, Yamaguchi I, Yamamoto I, et al. Slow N-acetyltransferase 2 genotype affects the incidence of isoniazid and rifampicin-induced hepatotoxicity. Int J Tuberc Lung Dis. 2000;4(3):256–61.

    CAS  PubMed  Google Scholar 

  120. Azuma J, Ohno M, Kubota R, et al. NAT2 genotype guided regimen reduces isoniazid-induced liver injury and early treatment failure in the 6-month four-drug standard treatment of tuberculosis: a randomized controlled trial for pharmacogenetics-based therapy. Eur J Clin Pharmacol. 2013;69(5):1091–101.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Peloquin CA, Namdar R, Singleton MD, Nix DE. Pharmacokinetics of rifampin under fasting conditions, with food, and with antacids. Chest. 1999;115(1):12–8.

    CAS  PubMed  Google Scholar 

  122. Ellard GA, Fourie PB. Rifampicin bioavailability: a review of its pharmacology and the chemotherapeutic necessity for ensuring optimal absorption. Int J Tuberc Lung Dis. 1999;3(11 Suppl 3):S301–8 discussion S17–21.

    CAS  PubMed  Google Scholar 

  123. Ellard GA. The evaluation of rifampicin bioavailabilities of fixed-dose combinations of anti-tuberculosis drugs: procedures for ensuring laboratory proficiency. Int J Tuberc Lung Dis. 1999;3(11 Suppl 3):S322–4 discussion S51–2.

    CAS  PubMed  Google Scholar 

  124. Acocella G, Bertrand A, Beytout J, et al. Comparison of three different regimens in the treatment of acute brucellosis: a multicenter multinational study. J Antimicrob Chemother. 1989;23(3):433–9.

    CAS  PubMed  Google Scholar 

  125. Peloquin C. What is the ‘right’ dose of rifampin? Int J Tuberc Lung Dis. 2003;7(1):3–5.

    PubMed  Google Scholar 

  126. Boeree M, Diacon A, Dawson R, et al. What Is the “Right” Dose of Rifampin? (abstract) The annual Conference on retroviruses and opportunistic infections; Atlanta, GA2013.

  127. (CDC) CfDCaP. Updated guidelines for the use of rifabutin or rifampin for the treatment and prevention of tuberculosis among HIV-infected patients taking protease inhibitors or nonnucleoside reverse transcriptase inhibitors. MMWR Morb Mortal Wkly Rep. 2000;49(9):185–9.

  128. Hafner R, Bethel J, Power M, et al. Tolerance and pharmacokinetic interactions of rifabutin and clarithromycin in human immunodeficiency virus-infected volunteers. Antimicrob Agents Chemother. 1998;42(3):631–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Temple ME, Nahata MC. Rifapentine: its role in the treatment of tuberculosis. Ann Pharmacother. 1999;33(11):1203–10.

    CAS  PubMed  Google Scholar 

  130. Gao XF, Li J, Yang ZW, Li YP. Rifapentine vs. rifampicin for the treatment of pulmonary tuberculosis: a systematic review. Int J Tuberc Lung Dis. 2009;13(7):810–9.

    PubMed  Google Scholar 

  131. Tam CM, Chan SL, Kam KM, et al. Rifapentine and isoniazid in the continuation phase of a 6-month regimen. Final report at 5 years: prognostic value of various measures. Int J Tuberc Lung Dis. 2002;6(1):3–10.

    CAS  PubMed  Google Scholar 

  132. Dorman SE, Goldberg S, Stout JE, et al. Substitution of rifapentine for rifampin during intensive phase treatment of pulmonary tuberculosis: Study 29 of the tuberculosis trials consortium. J Infect Dis. 2012;206(7):1030–40.

    CAS  PubMed  Google Scholar 

  133. Savic R, Weiner M, Mac Kenzie W, et al. PKPD analysis of rifapentine in patients during intensive phase treatment for tuberculosis from Tuberculosis Trial Consortium Studies 29 and 29X (abstract). Clinical Pharmacology of Tuberculosis Drugs; Denver, CO2013.

  134. Peloquin CA, Bulpitt AE, Jaresko GS, et al. Pharmacokinetics of pyrazinamide under fasting conditions, with food, and with antacids. Pharmacotherapy. 1998;18(6):1205–11.

    CAS  PubMed  Google Scholar 

  135. Weiner IM, Tinker JP. Pharmacology of pyrazinamide: metabolic and renal function studies related to the mechanism of drug-induced urate retention. J Pharmacol Exp Ther. 1972;180(2):411–34.

    CAS  PubMed  Google Scholar 

  136. Horn DL, Hewlett D Jr, Alfalla C, et al. Limited tolerance of ofloxacin and pyrazinamide prophylaxis against tuberculosis. N Engl J Med. 1994;330(17):1241.

    CAS  PubMed  Google Scholar 

  137. Lou HX, Shullo MA, McKaveney TP. Limited tolerability of levofloxacin and pyrazinamide for multidrug-resistant tuberculosis prophylaxis in a solid organ transplant population. Pharmacotherapy. 2002;22(6):701–4.

    CAS  PubMed  Google Scholar 

  138. Papastavros T, Dolovich LR, Holbrook A, et al. Adverse events associated with pyrazinamide and levofloxacin in the treatment of latent multidrug-resistant tuberculosis. CMAJ. 2002;167(2):131–6.

    PubMed Central  PubMed  Google Scholar 

  139. Peloquin CA, Bulpitt AE, Jaresko GS, et al. Pharmacokinetics of ethambutol under fasting conditions, with food, and with antacids. Antimicrob Agents Chemother. 1999;43(3):568–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Tappero JW, Bradford WZ, Agerton TB, et al. Serum concentrations of antimycobacterial drugs in patients with pulmonary tuberculosis in Botswana. Clin Infect Dis. 2005;41(4):461–9.

    CAS  PubMed  Google Scholar 

  141. Zhu M, Burman WJ, Starke JR, et al. Pharmacokinetics of ethambutol in children and adults with tuberculosis. Int J Tuberc Lung Dis. 2004;8(11):1360–7.

    CAS  PubMed  Google Scholar 

  142. Peloquin CA. Mycobacterium avium complex infection. Pharmacokinetic and pharmacodynamic considerations that may improve clinical outcomes. Clin Pharmacokinet. 1997;32(2):132–44.

    CAS  PubMed  Google Scholar 

  143. Zhu M, Burman WJ, Jaresko GS, et al. Population pharmacokinetics of intravenous and intramuscular streptomycin in patients with tuberculosis. Pharmacotherapy. 2001;21(9):1037–45.

    CAS  PubMed  Google Scholar 

  144. Demczar DJ, Nafziger AN, Bertino JS Jr. Pharmacokinetics of gentamicin at traditional versus high doses: implications for once-daily aminoglycoside dosing. Antimicrob Agents Chemother. 1997;41(5):1115–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Peloquin CA, Berning SE, Huitt GA, et al. Once-daily and twice-daily dosing of p-aminosalicylic acid granules. Am J Respir Crit Care Med. 1999;159(3):932–4.

    CAS  PubMed  Google Scholar 

  146. Andries A, Isaakidis P, Das M, et al. High rate of hypothyroidism in multidrug-resistant tuberculosis patients co-infected with HIV in Mumbai, India. PLoS One. 2013;8(10):e78313.

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Hwang TJ, Wares DF, Jafarov A, et al. Safety of cycloserine and terizidone for the treatment of drug-resistant tuberculosis: a meta-analysis. Int J Tuberc Lung Dis. 2013;17(10):1257–66.

    CAS  PubMed  Google Scholar 

  148. Carroll MW, Lee M, Cai Y, et al. Frequency of adverse reactions to first- and second-line anti-tuberculosis chemotherapy in a Korean cohort. Int J Tuberc Lung Dis. 2012;16(7):961–6.

    CAS  PubMed  Google Scholar 

  149. Zhu M, Nix DE, Adam RD, et al. Pharmacokinetics of cycloserine under fasting conditions and with high-fat meal, orange juice, and antacids. Pharmacotherapy. 2001;21(8):891–7.

    CAS  PubMed  Google Scholar 

  150. Auclair B, Nix DE, Adam RD, et al. Pharmacokinetics of ethionamide administered under fasting conditions or with orange juice, food, or antacids. Antimicrob Agents Chemother. 2001;45(3):810–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Ziganshina LE, Titarenko AF, Davies GR. Fluoroquinolones for treating tuberculosis (presumed drug-sensitive). Cochrane Database Syst Rev. 2013;6:Cd004795.

  152. Moadebi S, Harder CK, Fitzgerald MJ, et al. Fluoroquinolones for the treatment of pulmonary tuberculosis. Drugs. 2007;67(14):2077–99.

    CAS  PubMed  Google Scholar 

  153. Berning SE. The role of fluoroquinolones in tuberculosis today. Drugs. 2001;61(1):9–18.

    CAS  PubMed  Google Scholar 

  154. Pranger AD, van Altena R, Aarnoutse RE, et al. Evaluation of moxifloxacin for the treatment of tuberculosis: 3 years of experience. Eur Respir J. 2011;38(4):888–94.

    CAS  PubMed  Google Scholar 

  155. Rustomjee R, Lienhardt C, Kanyok T, et al. A Phase II study of the sterilising activities of ofloxacin, gatifloxacin and moxifloxacin in pulmonary tuberculosis. Int J Tuberc Lung Dis. 2008;12(2):128–38.

    CAS  PubMed  Google Scholar 

  156. Wang JY, Wang JT, Tsai TH, et al. Adding moxifloxacin is associated with a shorter time to culture conversion in pulmonary tuberculosis. Int J Tuberc Lung Dis. 2010;14(1):65–71.

    PubMed  Google Scholar 

  157. Jawahar MS, Banurekha VV, Paramasivan CN, et al. Randomized clinical trial of thrice-weekly 4-month moxifloxacin or gatifloxacin containing regimens in the treatment of new sputum positive pulmonary tuberculosis patients. PLoS One. 2013;8(7):e67030.

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Dawson R, Diacon A. PA-824, moxifloxacin and pyrazinamide combination therapy for tuberculosis. Expert Opin Investig Drugs. 2013;22(7):927–32.

    CAS  PubMed  Google Scholar 

  159. Dorman SE, Johnson JL, Goldberg S, et al. Substitution of moxifloxacin for isoniazid during intensive phase treatment of pulmonary tuberculosis. Am J Respir Crit Care Med. 2009;180(3):273–80.

    CAS  PubMed  Google Scholar 

  160. Koh WJ, Lee SH, Kang YA, et al. Comparison of levofloxacin versus moxifloxacin for multidrug-resistant tuberculosis. Am J Respir Crit Care Med. 2013;188(7):858–64.

    CAS  PubMed  Google Scholar 

  161. Demolis JL, Kubitza D, Tenneze L, Funck-Brentano C. Effect of a single oral dose of moxifloxacin (400 mg and 800 mg) on ventricular repolarization in healthy subjects. Clin Pharmacol Ther. 2000;68(6):658–66.

    CAS  PubMed  Google Scholar 

  162. Peloquin CA, Hadad DJ, Molino LP, et al. Population pharmacokinetics of levofloxacin, gatifloxacin, and moxifloxacin in adults with pulmonary tuberculosis. Antimicrob Agents Chemother. 2008;52(3):852–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Fish DN, Chow AT. The clinical pharmacokinetics of levofloxacin. Clin Pharmacokinet. 1997;32(2):101–19.

    CAS  PubMed  Google Scholar 

  164. Nijland HM, Ruslami R, Suroto AJ, et al. Rifampicin reduces plasma concentrations of moxifloxacin in patients with tuberculosis. Clin Infect Dis. 2007;45(8):1001–7.

    CAS  PubMed  Google Scholar 

  165. Weiner M, Burman W, Luo CC, et al. Effects of rifampin and multidrug resistance gene polymorphism on concentrations of moxifloxacin. Antimicrob Agents Chemother. 2007;51(8):2861–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Dooley K, Flexner C, Hackman J, et al. Repeated administration of high-dose intermittent rifapentine reduces rifapentine and moxifloxacin plasma concentrations. Antimicrob Agents Chemother. 2008;52(11):4037–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Corrao G, Zambon A, Bertu L, et al. Evidence of tendinitis provoked by fluoroquinolone treatment: a case-control study. Drug Saf. 2006;29(10):889–96.

    CAS  PubMed  Google Scholar 

  168. Lauzardo M, Peloquin CA. Antituberculosis therapy for 2012 and beyond. Expert Opin Pharmacother. 2012;13(4):511–26.

    CAS  PubMed  Google Scholar 

  169. Garcia-Tapia A, Rodriguez JC, Ruiz M, Royo G. Action of fluoroquinolones and Linezolid on logarithmic- and stationary-phase culture of Mycobacterium tuberculosis. Chemotherapy. 2004;50(5):211–3.

    CAS  PubMed  Google Scholar 

  170. Rodriguez JC, Ruiz M, Lopez M, Royo G. In vitro activity of moxifloxacin, levofloxacin, gatifloxacin and linezolid against Mycobacterium tuberculosis. Int J Antimicrob Agents. 2002;20(6):464–7.

    CAS  PubMed  Google Scholar 

  171. Sotgiu G, Centis R, D’Ambrosio L, et al. Efficacy, safety and tolerability of linezolid containing regimens in treating MDR-TB and XDR-TB: systematic review and meta-analysis. Eur Respir J. 2012;40(6):1430–42.

    CAS  PubMed  Google Scholar 

  172. Alffenaar JW, van Altena R, Harmelink IM, et al. Comparison of the pharmacokinetics of two dosage regimens of linezolid in multidrug-resistant and extensively drug-resistant tuberculosis patients. Clin Pharmacokinet. 2010;49(8):559–65.

    CAS  PubMed  Google Scholar 

  173. Park IN, Hong SB, Oh YM, et al. Efficacy and tolerability of daily-half dose linezolid in patients with intractable multidrug-resistant tuberculosis. J Antimicrob Chemother. 2006;58(3):701–4.

    CAS  PubMed  Google Scholar 

  174. Andes D, van Ogtrop ML, Peng J, Craig WA. In vivo pharmacodynamics of a new oxazolidinone (linezolid). Antimicrob Agents Chemother. 2002;46(11):3484–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Rayner CR, Forrest A, Meagher AK, et al. Clinical pharmacodynamics of linezolid in seriously ill patients treated in a compassionate use programme. Clin Pharmacokinet. 2003;42(15):1411–23.

    CAS  PubMed  Google Scholar 

  176. Gopal M, Padayatchi N, Metcalfe JZ, O’Donnell MR. Systematic review of clofazimine for the treatment of drug-resistant tuberculosis. Int J Tuberc Lung Dis. 2013;17(8):1001–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Garrelts JC. Clofazimine: a review of its use in leprosy and Mycobacterium avium complex infection. DICP. 1991;25(5):525–31.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Charles Peloquin does not have funding or conflicts of interest relevant to the content of this review. Abdullah Alsultan does not have funding or conflict of interest relevant to the content of this review. The authors acknowledge academic support from King Saud University for Dr. Sultan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles A. Peloquin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsultan, A., Peloquin, C.A. Therapeutic Drug Monitoring in the Treatment of Tuberculosis: An Update. Drugs 74, 839–854 (2014). https://doi.org/10.1007/s40265-014-0222-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-014-0222-8

Keywords

Navigation