Skip to main content
Log in

Aβ-Degrading Proteases: Therapeutic Potential in Alzheimer Disease

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

The amyloid β-protein (Aβ) plays an indispensable role in the pathogenesis of Alzheimer disease (AD). Aβ is subject to proteolytic degradation by a diverse array of peptidases and proteinases, known collectively as Aβ-degrading proteases (AβDPs). A growing number of AβDPs have been identified that impact Aβ powerfully and in a surprising variety of ways. As such, AβDPs hold considerable therapeutic potential for the treatment and/or prevention of AD. Here, we critically review the relative merits of therapeutic strategies targeting AβDPs compared with current Aβ-lowering strategies focused on immunotherapies and pharmacological modulation of Aβ-producing enzymes. Several innovative advances have increased considerably the feasibility of delivering AβDPs to the brain or enhancing their activity in a non-invasive manner. We argue that therapies targeting AβDPs offer numerous potential advantages that should be explored through continued research into this promising field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mucke L. Neuroscience: Alzheimer’s disease. Nature. 2009;461(7266):895–7.

    Article  CAS  PubMed  Google Scholar 

  2. Prince M, Wimo A, Guerchet M, Ali GC, Wu TT, Prina M, et al. World Alzheimer’s Report 2015. The global impact of dementia: an analysis of prevalence, incedence, cost and trends. London: Alzheimer’s Disease International; 2015.

    Google Scholar 

  3. Alzheimer’s A. 2015 Alzheimer’s disease facts and figures. Alzheimer Dement. 2015;11(3):332–84.

    Article  Google Scholar 

  4. James BD, Leurgans SE, Hebert LE, Scherr PA, Yaffe K, Bennett DA. Contribution of Alzheimer disease to mortality in the United States. Neurology. 2014;82(12):1045–50. doi:10.1212/WNL.0000000000000240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Godyn J, Jonczyk J, Panek D, Malawska B. Therapeutic strategies for Alzheimer’s disease in clinical trials. Pharmacol Rep. 2016;68(1):127–38. doi:10.1016/j.pharep.2015.07.006.

    Article  CAS  PubMed  Google Scholar 

  6. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353–6. doi:10.1126/science.1072994.

    Article  CAS  PubMed  Google Scholar 

  7. Selkoe DJ, Schenk D. Alzheimer’s disease: molecular understanding predicts amyloid-based therapeutics. Annu Rev Pharmacol Toxicol. 2003;43:545–84.

    Article  CAS  PubMed  Google Scholar 

  8. Tanzi RE. The genetics of Alzheimer disease. Cold Spring Harbor Perspect Med. 2012. doi:10.1101/cshperspect.a006296.

    Google Scholar 

  9. Holsinger RM, McLean CA, Beyreuther K, Masters CL, Evin G. Increased expression of the amyloid precursor beta-secretase in Alzheimer’s disease. Ann Neurol. 2002;51(6):783–6. doi:10.1002/ana.10208.

    Article  CAS  PubMed  Google Scholar 

  10. Holsinger RM, Lee JS, Boyd A, Masters CL, Collins SJ. CSF BACE1 activity is increased in CJD and Alzheimer disease versus [corrected] other dementias. Neurology. 2006;67(4):710–2. doi:10.1212/01.wnl.0000229925.52203.4c.

    Article  CAS  PubMed  Google Scholar 

  11. Leissring MA. Proteolytic degradation of the amyloid beta-protein: the forgotten side of Alzheimer’s disease. Curr Alzheimer Res. 2006;3(5):431–5.

    Article  CAS  PubMed  Google Scholar 

  12. Bu G. Apolipoprotein E and its receptors in Alzheimer’s disease: pathways, pathogenesis and therapy. Nat Rev Neurosci. 2009;10(5):333–44. doi:10.1038/nrn2620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mawuenyega KG, Kasten T, Sigurdson W, Bateman RJ. Amyloid-beta isoform metabolism quantitation by stable isotope-labeled kinetics. Anal Biochem. 2013;440(1):56–62. doi:10.1016/j.ab.2013.04.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, et al. Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science. 2010;330(6012):1774. doi:10.1126/science.1197623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. De Strooper B, Vassar R, Golde T. The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol. 2010;6(2):99–107.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Selkoe DJ, Wolfe MS. Presenilin: running with scissors in the membrane. Cell. 2007;131(2):215–21.

    Article  CAS  PubMed  Google Scholar 

  17. Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, Jenkins NA, et al. Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum Mol Genet. 2004;13(2):159–70. doi:10.1093/hmg/ddh019.

    Article  CAS  PubMed  Google Scholar 

  18. Suzuki N, Cheung TT, Cai XD, Odaka A, Otvos L Jr, Eckman C, et al. An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants. Science. 1994;264(5163):1336–40.

    Article  CAS  PubMed  Google Scholar 

  19. Luo Y, Bolon B, Damore MA, Fitzpatrick D, Liu H, Zhang J, et al. BACE1 (beta-secretase) knockout mice do not acquire compensatory gene expression changes or develop neural lesions over time. Neurobiol Dis. 2003;14(1):81–8 (S0969996103001049 [pii]).

    Article  CAS  PubMed  Google Scholar 

  20. Luo Y, Bolon B, Kahn S, Bennett BD, Babu-Khan S, Denis P, et al. Mice deficient in BACE1, the Alzheimer’s beta-secretase, have normal phenotype and abolished beta-amyloid generation. Nat Neurosci. 2001;4(3):231–2. doi:10.1038/85059.

    Article  CAS  PubMed  Google Scholar 

  21. Cole SL, Vassar R. BACE1 structure and function in health and Alzheimer’s disease. Curr Alzheimer Res. 2008;5(2):100–20.

    Article  CAS  PubMed  Google Scholar 

  22. Kuhn PH, Koroniak K, Hogl S, Colombo A, Zeitschel U, Willem M, et al. Secretome protein enrichment identifies physiological BACE1 protease substrates in neurons. EMBO J. 2012;31(14):3157–68. doi:10.1038/emboj.2012.173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fleck D, van Bebber F, Colombo A, Galante C, Schwenk BM, Rabe L, et al. Dual cleavage of neuregulin 1 type III by BACE1 and ADAM17 liberates its EGF-like domain and allows paracrine signaling. J Neurosci. 2013;33(18):7856–69. doi:10.1523/JNEUROSCI.3372-12.2013.

    Article  CAS  PubMed  Google Scholar 

  24. Filser S, Ovsepian SV, Masana M, Blazquez-Llorca L, Brandt Elvang A, Volbracht C, et al. Pharmacological inhibition of BACE1 impairs synaptic plasticity and cognitive functions. Biol Psychiatry. 2015;77(8):729–39. doi:10.1016/j.biopsych.2014.10.013.

    Article  CAS  PubMed  Google Scholar 

  25. Yan R, Vassar R. Targeting the beta secretase BACE1 for Alzheimer’s disease therapy. Lancet Neurol. 2014;13(3):319–29. doi:10.1016/S1474-4422(13)70276-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shen J, Bronson RT, Chen DF, Xia W, Selkoe DJ, Tonegawa S. Skeletal and CNS defects in Presenilin-1-deficient mice. Cell. 1997;89(4):629–39.

    Article  CAS  PubMed  Google Scholar 

  27. Selkoe DJ. Presenilin, Notch, and the genesis and treatment of Alzheimer’s disease. Proc Natl Acad Sci USA. 2001;98(20):11039–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lleo A, Saura CA. gamma-secretase substrates and their implications for drug development in Alzheimer’s disease. Curr Top Med Chem. 2011;11(12):1513–27.

    Article  CAS  PubMed  Google Scholar 

  29. De Strooper B. Lessons from a failed gamma-secretase Alzheimer trial. Cell. 2014;159(4):721–6. doi:10.1016/j.cell.2014.10.016.

    Article  PubMed  Google Scholar 

  30. Siemers ER, Dean RA, Friedrich S, Ferguson-Sells L, Gonzales C, Farlow MR, et al. Safety, tolerability, and effects on plasma and cerebrospinal fluid amyloid-beta after inhibition of gamma-secretase. Clin Neuropharmacol. 2007;30(6):317–25. doi:10.1097/WNF.0b013e31805b7660.

    Article  CAS  PubMed  Google Scholar 

  31. Ascher-Svanum H, Chen YF, Hake A, Kahle-Wrobleski K, Schuster D, Kendall D, et al. Cognitive and functional decline in patients with mild alzheimer dementia with or without comorbid diabetes. Clin Ther. 2015;37(6):1195–205. doi:10.1016/j.clinthera.2015.01.002.

    Article  PubMed  Google Scholar 

  32. Bai XC, Yan C, Yang G, Lu P, Ma D, Sun L, et al. An atomic structure of human gamma-secretase. Nature. 2015;525(7568):212–7. doi:10.1038/nature14892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wolfe MS. Inhibition and modulation of gamma-secretase for Alzheimer’s disease. Neurotherapeutics. 2008;5(3):391–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Eriksen JL, Sagi SA, Smith TE, Weggen S, Das P, McLendon DC, et al. NSAIDs and enantiomers of flurbiprofen target gamma-secretase and lower Abeta 42 in vivo. J Clin Invest. 2003;112(3):440–9. doi:10.1172/JCI18162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. De Strooper B, Iwatsubo T, Wolfe MS. Presenilins and gamma-secretase: structure, function, and role in Alzheimer disease. Cold Spring Harb Perspect Med. 2012;2(1):a006304. doi:10.1101/cshperspect.a006304.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, et al. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med. 2000;6(8):916–9.

    Article  CAS  PubMed  Google Scholar 

  37. DeMattos RB, Bales KR, Cummins DJ, Dodart JC, Paul SM, Holtzman DM. Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA. 2001;98(15):8850–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hock C, Konietzko U, Papassotiropoulos A, Wollmer A, Streffer J, von Rotz RC, et al. Generation of antibodies specific for beta-amyloid by vaccination of patients with Alzheimer disease. Nat Med. 2002;8(11):1270–5.

    Article  CAS  PubMed  Google Scholar 

  39. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature. 1999;400(6740):173–7.

    Article  CAS  PubMed  Google Scholar 

  40. Weiner HL, Lemere CA, Maron R, Spooner ET, Grenfell TJ, Mori C, et al. Nasal administration of amyloid-beta peptide decreases cerebral amyloid burden in a mouse model of Alzheimer’s disease. Ann Neurol. 2000;48(4):567–79.

    Article  CAS  PubMed  Google Scholar 

  41. Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, Bayer A, et al. Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet. 2008;372(9634):216–23. doi:10.1016/S0140-6736(08)61075-2.

    Article  CAS  PubMed  Google Scholar 

  42. Hock C, Konietzko U, Streffer JR, Tracy J, Signorell A, Muller-Tillmanns B, et al. Antibodies against beta-amyloid slow cognitive decline in Alzheimer’s disease. Neuron. 2003;38(4):547–54.

    Article  CAS  PubMed  Google Scholar 

  43. Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO. Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med. 2003;9(4):448–52.

    Article  CAS  PubMed  Google Scholar 

  44. Liu YH, Giunta B, Zhou HD, Tan J, Wang YJ. Immunotherapy for Alzheimer disease: the challenge of adverse effects. Nat Rev Neurol. 2012;8(8):465–9. doi:10.1038/nrneurol.2012.118.

    CAS  PubMed  Google Scholar 

  45. Fuller JP, Stavenhagen JB, Teeling JL. New roles for Fc receptors in neurodegeneration—the impact on immunotherapy for Alzheimer’s disease. Front Neurosci. 2014;8:235. doi:10.3389/fnins.2014.00235.

    PubMed  PubMed Central  Google Scholar 

  46. Eckman EA, Adams SK, Troendle FJ, Stodola BA, Kahn MA, Fauq AH, et al. Regulation of steady-state beta-amyloid levels in the brain by neprilysin and endothelin-converting enzyme but not angiotensin-converting enzyme. J Biol Chem. 2006;281(41):30471–8.

    Article  CAS  PubMed  Google Scholar 

  47. Eckman EA, Reed DK, Eckman CB. Degradation of the Alzheimer’s amyloid beta peptide by endothelin-converting enzyme. J Biol Chem. 2001;276(27):24540–8.

    Article  CAS  PubMed  Google Scholar 

  48. Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E, et al. Clearance systems in the brain—implications for Alzheimer disease. Nat Rev Neurol. 2015;11(8):457–70. doi:10.1038/nrneurol.2015.119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Leissring MA, Saido TC. Degradation of amyloid-β protein. In: Selkoe DJ, Mandelkow E, Holtzman DM, editors. The biology of Alzheimer disease. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2011. p. 387–404.

    Google Scholar 

  50. Saido T, Leissring MA. Proteolytic degradation of amyloid β-protein. Cold Spring Harb Perspect Med. 2012;2(6):a006379. doi:10.1101/cshperspect.a006379.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mueller-Steiner S, Zhou Y, Arai H, Roberson ED, Sun B, Chen J, et al. Antiamyloidogenic and neuroprotective functions of cathepsin B: implications for Alzheimer’s disease. Neuron. 2006;51(6):703–14. doi:10.1016/j.neuron.2006.07.027.

    Article  CAS  PubMed  Google Scholar 

  52. Walsh DM, Selkoe DJ. Oligomers on the brain: the emerging role of soluble protein aggregates in neurodegeneration. Protein Pept Lett. 2004;11(3):213–28.

    Article  CAS  PubMed  Google Scholar 

  53. Shankar GM, Leissring MA, Adame A, Sun X, Spooner E, Masliah E, et al. Biochemical and immunohistochemical analysis of an Alzheimer’s disease mouse model reveals the presence of multiple cerebral Abeta assembly forms throughout life. Neurobiol Dis. 2009;36(2):293–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Leissring MA, Farris W, Chang AY, Walsh DM, Wu X, Sun X, et al. Enhanced proteolysis of beta-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron. 2003;40(6):1087–93.

    Article  CAS  PubMed  Google Scholar 

  55. Meilandt WJ, Cisse M, Ho K, Wu T, Esposito LA, Scearce-Levie K, et al. Neprilysin overexpression inhibits plaque formation but fails to reduce pathogenic Abeta oligomers and associated cognitive deficits in human amyloid precursor protein transgenic mice. J Neurosci. 2009;29(7):1977–86. doi:10.1523/JNEUROSCI.2984-08.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Leissring MA, Turner AJ. Regulation of distinct pools of amyloid beta-protein by multiple cellular proteases. Alzheimer Res Ther. 2013;5(4):37. doi:10.1186/alzrt194.

    Article  CAS  Google Scholar 

  57. LaFerla FM, Green KN, Oddo S. Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci. 2007;8(7):499–509.

    Article  CAS  PubMed  Google Scholar 

  58. Leissring MA. Aβ degradation-the inside story. Front Aging Neurosci. 2014;6:229. doi:10.3389/fnagi.2014.00229.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lewis PA, Piper S, Baker M, Onstead L, Murphy MP, Hardy J, et al. Expression of BRI-amyloid beta peptide fusion proteins: a novel method for specific high-level expression of amyloid beta peptides. Biochim Biophys Acta. 2001;1537(1):58–62.

    Article  CAS  PubMed  Google Scholar 

  60. Kim J, Onstead L, Randle S, Price R, Smithson L, Zwizinski C, et al. Abeta40 inhibits amyloid deposition in vivo. J Neurosci. 2007;27(3):627–33. doi:10.1523/JNEUROSCI.4849-06.2007.

    Article  CAS  PubMed  Google Scholar 

  61. Kim J, Chakrabarty P, Hanna A, March A, Dickson DW, Borchelt DR, et al. Normal cognition in transgenic BRI2-Abeta mice. Mol Neurodegener. 2013;8:15. doi:10.1186/1750-1326-8-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Leissring MA. The AβCs of Aβ-cleaving proteases. J Biol Chem. 2008;283(44):29645–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Matsuoka Y, Saito M, LaFrancois J, Saito M, Gaynor K, Olm V, et al. Novel therapeutic approach for the treatment of Alzheimer’s disease by peripheral administration of agents with an affinity to beta-amyloid. J Neurosci. 2003;23(1):29–33.

    CAS  PubMed  Google Scholar 

  64. Liu Y, Studzinski C, Beckett T, Guan H, Hersh MA, Murphy MP, et al. Expression of neprilysin in skeletal muscle reduces amyloid burden in a transgenic mouse model of Alzheimer disease. Mol Ther. 2009;17(8):1381–6. doi:10.1038/mt.2009.115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu Y, Studzinski C, Beckett T, Murphy MP, Klein RL, Hersh LB. Circulating neprilysin clears brain amyloid. Mol Cell Neurosci. 2010;45(2):101–7. doi:10.1016/j.mcn.2010.05.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Henderson SJ, Andersson C, Narwal R, Janson J, Goldschmidt TJ, Appelkvist P, et al. Sustained peripheral depletion of amyloid-beta with a novel form of neprilysin does not affect central levels of amyloid-beta. Brain. 2014;137(Pt 2):553–64. doi:10.1093/brain/awt308.

    Article  PubMed  Google Scholar 

  67. Walker JR, Pacoma R, Watson J, Ou W, Alves J, Mason DE, et al. Enhanced proteolytic clearance of plasma Abeta by peripherally administered neprilysin does not result in reduced levels of brain Abeta in mice. J Neurosci. 2013;33(6):2457–64. doi:10.1523/JNEUROSCI.3407-12.2013.

    Article  CAS  PubMed  Google Scholar 

  68. Song ES, Juliano MA, Juliano L, Hersh LB. Substrate activation of insulin-degrading enzyme (insulysin). A potential target for drug development. J Biol Chem. 2003;278(50):49789–94. doi:10.1074/jbc.M308983200.

    Article  CAS  PubMed  Google Scholar 

  69. Abdul-Hay SO, Lane AL, Caulfield TR, Claussin C, Bertrand J, Masson A, et al. Optimization of peptide hydroxamate inhibitors of insulin-degrading enzyme reveals marked substrate-selectivity. J Med Chem. 2013;56(6):2246–55. doi:10.1021/jm301280p.

    Article  CAS  PubMed  Google Scholar 

  70. Marr RA, Rockenstein E, Mukherjee A, Kindy MS, Hersh LB, Gage FH, et al. Neprilysin gene transfer reduces human amyloid pathology in transgenic mice. J Neurosci. 2003;23(6):1992–6.

    CAS  PubMed  Google Scholar 

  71. Spencer B, Marr RA, Rockenstein E, Crews L, Adame A, Potkar R, et al. Long-term neprilysin gene transfer is associated with reduced levels of intracellular Abeta and behavioral improvement in APP transgenic mice. BMC Neurosci. 2008;9:109. doi:10.1186/1471-2202-9-109.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Tuszynski MH, Thal L, Pay M, Salmon DP, U H-S, Bakay R et al. A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med. 2005;11(5):551–5. doi:10.1038/nm1239.

    Article  CAS  PubMed  Google Scholar 

  73. Tuszynski MH, Yang JH, Barba D, U H-S, Bakay RA, Pay MM et al. Nerve growth factor gene therapy: activation of neuronal responses in Alzheimer disease. JAMA Neurol. 2015;72(10):1139–47. doi:10.1001/jamaneurol.2015.1807.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Li Y, Wang J, Zhang S, Liu Z. Neprilysin gene transfer: a promising therapeutic approach for Alzheimer’s disease. J Neurosci Res. 2015;93(9):1325–9. doi:10.1002/jnr.23564.

    Article  CAS  PubMed  Google Scholar 

  75. Barua NU, Miners JS, Bienemann AS, Wyatt MJ, Welser K, Tabor AB, et al. Convection-enhanced delivery of neprilysin: a novel amyloid-beta-degrading therapeutic strategy. J Alzheimers Dis. 2012;32(1):43–56. doi:10.3233/JAD-2012-120658.

    CAS  PubMed  Google Scholar 

  76. Iwata N, Sekiguchi M, Hattori Y, Takahashi A, Asai M, Ji B, et al. Global brain delivery of neprilysin gene by intravascular administration of AAV vector in mice. Sci Rep. 2013;3:1472. doi:10.1038/srep01472.

    PubMed  PubMed Central  Google Scholar 

  77. Spencer B, Marr RA, Gindi R, Potkar R, Michael S, Adame A, et al. Peripheral delivery of a CNS targeted, metalo-protease reduces aβ toxicity in a mouse model of Alzheimer’s disease. PLoS One. 2011;6(1):e16575. doi:10.1371/journal.pone.0016575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Spencer BJ, Verma IM. Targeted delivery of proteins across the blood-brain barrier. Proc Natl Acad Sci USA. 2007;104(18):7594–9. doi:10.1073/pnas.0702170104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Spencer B, Verma I, Desplats P, Morvinski D, Rockenstein E, Adame A, et al. A neuroprotective brain-penetrating endopeptidase fusion protein ameliorates Alzheimer disease pathology and restores neurogenesis. J Biol Chem. 2014;289(25):17917–31. doi:10.1074/jbc.M114.557439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jacobsen JS, Comery TA, Martone RL, Elokdah H, Crandall DL, Oganesian A, et al. Enhanced clearance of Abeta in brain by sustaining the plasmin proteolysis cascade. Proc Natl Acad Sci USA. 2008;105(25):8754–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Van Nostrand WE, Melchor J, Wagner M, Davis J. Cerebrovascular smooth muscle cell surface fibrillar A beta. Alteration of the proteolytic environment in the cerebral vessel wall. Ann N Y Acad Sci. 2000;903:89–96.

    Article  PubMed  Google Scholar 

  82. Efanov AM, Barrett DG, Brenner MB, Briggs SL, Delaunois A, Durbin JD, et al. A novel glucokinase activator modulates pancreatic islet and hepatocyte function. Endocrinology. 2005;146(9):3696–701.

    Article  CAS  PubMed  Google Scholar 

  83. Cabrol C, Huzarska MA, Dinolfo C, Rodriguez MC, Reinstatler L, Ni J, et al. Small-molecule activators of insulin-degrading enzyme discovered through high-throughput compound screening. PLoS One. 2009;4(4):e5274.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Bae SJ, Matsunaga Y, Takenaka M, Tanaka Y, Hamazaki Y, Shimizu K, et al. Substance P induced preprotachykinin-a mRNA, neutral endopeptidase mRNA and substance P in cultured normal fibroblasts. Int Arch Allergy Immunol. 2002;127(4):316–21.

    Article  CAS  PubMed  Google Scholar 

  85. Mohajeri MH, Kuehnle K, Li H, Poirier R, Tracy J, Nitsch RM. Anti-amyloid activity of neprilysin in plaque-bearing mouse models of Alzheimer’s disease. FEBS Lett. 2004;562(1–3):16–21.

    Article  CAS  PubMed  Google Scholar 

  86. Mohajeri MH, Wollmer MA, Nitsch RM. Abeta 42-induced increase in neprilysin is associated with prevention of amyloid plaque formation in vivo. J Biol Chem. 2002;277(38):35460–5.

    Article  CAS  PubMed  Google Scholar 

  87. Belyaev ND, Kellett KA, Beckett C, Makova NZ, Revett TJ, Nalivaeva NN, et al. The transcriptionally active amyloid precursor protein (APP) intracellular domain is preferentially produced from the 695 isoform of APP in a β-secretase-dependent pathway. J Biol Chem. 2010;285(53):41443–54. doi:10.1074/jbc.M110.141390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pardossi-Piquard R, Petit A, Kawarai T, Sunyach C, Alves da Costa C, Vincent B, et al. Presenilin-dependent transcriptional control of the Abeta-degrading enzyme neprilysin by intracellular domains of betaAPP and APLP. Neuron. 2005;46(4):541–54.

    Article  CAS  PubMed  Google Scholar 

  89. Huang J, Guan H, Booze RM, Eckman CB, Hersh LB. Estrogen regulates neprilysin activity in rat brain. Neurosci Lett. 2004;367(1):85–7. doi:10.1016/j.neulet.2004.05.085.

    Article  CAS  PubMed  Google Scholar 

  90. Lazarov O, Robinson J, Tang YP, Hairston IS, Korade-Mirnics Z, Lee VM, et al. Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice. Cell. 2005;120(5):701–13.

    Article  CAS  PubMed  Google Scholar 

  91. Saito T, Iwata N, Tsubuki S, Takaki Y, Takano J, Huang SM, et al. Somatostatin regulates brain amyloid beta peptide Abeta42 through modulation of proteolytic degradation. Nat Med. 2005;11(4):434–9. doi:10.1038/nm1206.

    Article  CAS  PubMed  Google Scholar 

  92. Melzig MF, Janka M. Enhancement of neutral endopeptidase activity in SK-N-SH cells by green tea extract. Phytomedicine. 2003;10(6–7):494–8.

    Article  CAS  PubMed  Google Scholar 

  93. Parachikova A, Green KN, Hendrix C, LaFerla FM. Formulation of a medical food cocktail for Alzheimer’s disease: beneficial effects on cognition and neuropathology in a mouse model of the disease. PLoS One. 2010;5(11):e14015. doi:10.1371/journal.pone.0014015.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm A. Leissring.

Ethics declarations

Funding

Supported by Grant No. 7-11-CD-06 from the American Diabetes Association to M. A. L. No funds were received specifically for the publication of this review.

Conflicts of interest

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leissring, M.A. Aβ-Degrading Proteases: Therapeutic Potential in Alzheimer Disease. CNS Drugs 30, 667–675 (2016). https://doi.org/10.1007/s40263-016-0364-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-016-0364-1

Keywords

Navigation