Skip to main content
Log in

Antineuronal Antibodies Against Neurotransmitter Receptors and Synaptic Proteins in Schizophrenia: Current Knowledge and Clinical Implications

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

When Eugen Bleuler coined the term ‘schizophrenia’ he believed that various causes of illness may underlie this disease. Currently, neurodevelopmental abnormalities and consecutive impairments in dopaminergic and glutamatergic neurotransmission are considered as major causes of schizophrenia. However, there are various indications for involvement of immune processes, at least in subgroups of patients. Circulating antineuronal antibodies provide a promising link between the well-described disturbances in neurotransmission and the immune hypothesis of schizophrenia. This review summarizes important studies that have examined the role of glutamate, dopamine, acetylcholine and serotonin receptor autoantibodies, and other antineuronal antibodies against synaptic proteins in the serum of patients diagnosed with schizophrenia. Currently, it is not known whether the presence of antineuronal antibodies in blood should be considered as a causal or disease-modulating factor in schizophrenia. Due to emerging evidence regarding the important role of the blood–brain barrier, combined testing of serum and cerebrospinal fluid is likely to be more appropriate to answer this question than pure serum analyses. We suggest implementation of such testing in first-onset and treatment-resistant patients as part of the diagnostic process. In addition, future clinical trials should evaluate if immunotherapy (e.g. cortisone pulse therapy, intravenous immunoglobulins, plasmapheresis, rituximab, or cyclophosphamide) is helpful in cases with a neuroinflammatory component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Steiner J, Bogerts B, Sarnyai Z, Walter M, Gos T, Bernstein HG, et al. Bridging the gap between the immune and glutamate hypotheses of schizophrenia and major depression: potential role of glial NMDA receptor modulators and impaired blood-brain barrier integrity. World J Biol Psychiatry. 2012;13(7):482–92.

    Article  PubMed  Google Scholar 

  2. Steiner J, Walter M, Glanz W, Sarnyai Z, Bernstein HG, Vielhaber S, et al. Increased prevalence of diverse N-methyl-d-aspartate glutamate receptor antibodies in patients with an initial diagnosis of schizophrenia: specific relevance of IgG NR1a antibodies for distinction from N-methyl-d-aspartate glutamate receptor encephalitis. JAMA Psychiatry. 2013;70(3):271–8.

    Article  PubMed  Google Scholar 

  3. Steiner J, Teegen B, Schiltz K, Bernstein HG, Stoecker W, Bogerts B. Prevalence of N-methyl-D-aspartate receptor autoantibodies in the peripheral blood: healthy control samples revisited. JAMA Psychiatry. 2014;71(7):838–9.

    Article  PubMed  Google Scholar 

  4. Busse S, Busse M, Brix B, Probst C, Genz A, Bogerts B, et al. Seroprevalence of N-methyl-d-aspartate glutamate receptor (NMDA-R) autoantibodies in aging subjects without neuropsychiatric disorders and in dementia patients. Eur Arch Psychiatry Clin Neurosci. 2014;264(6):545–50.

    Article  PubMed  Google Scholar 

  5. Dahm L, Ott C, Steiner J, Stepniak B, Teegen B, Saschenbrecker S, et al. Seroprevalence of autoantibodies against brain antigens in health and disease. Ann Neurol. 2014;76(1):82–94.

    Article  CAS  PubMed  Google Scholar 

  6. Ehrenreich H, Steiner J. Reply. Ann Neurol. 2015;77(1):184.

    Article  PubMed  Google Scholar 

  7. Müller UJ, Teegen B, Probst C, Bernstein HG, Busse S, Bogerts B, et al. Absence of dopamine receptor serum autoantibodies in schizophrenia patients with an acute disease episode. Schizophr Res. 2014;158(1–3):272–4.

    Article  PubMed  Google Scholar 

  8. Steiner J, Müller UJ, Busse S, Schiltz K, Bernstein HG, Juckel G, et al. Antikörper gegen Neurotransmitter-Rezeptoren und Schizophrenie. Fortschr Neurol Psychiatr (in press).

  9. Bleuler E. Dementia praecox oder die Gruppe der Schizophrenien. In: Aschaffenburg G, editor. Handbuch der Psychiatrie. Leipzig-Wien: Deuticke; 1911.

    Google Scholar 

  10. World Health Organization. The ICD-10 classification of mental and behavioural disorders: clinical descriptions and diagnostic guidelines. Geneva: World Health Organization; 1992.

  11. American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5. Washington, D.C: American Psychiatric Association; 2013.

  12. Carlsson A. The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology. 1988;1(3):179–86.

    Article  CAS  PubMed  Google Scholar 

  13. Carlsson A, Hansson LO, Waters N, Carlsson ML. A glutamatergic deficiency model of schizophrenia. Br J Psychiatry Suppl. 1999;37:2–6.

    PubMed  Google Scholar 

  14. Stahl SM. Beyond the dopamine hypothesis to the NMDA glutamate receptor hypofunction hypothesis of schizophrenia. CNS Spectr. 2007;12(4):265–8.

    PubMed  Google Scholar 

  15. Schwarz E, van Beveren NJ, Ramsey J, Leweke FM, Rothermundt M, Bogerts B, et al. Identification of subgroups of schizophrenia patients with changes in either immune or growth factor and hormonal pathways. Schizophr Bull. 2014;40(4):787–95.

    Article  CAS  PubMed  Google Scholar 

  16. Beumer W, Gibney SM, Drexhage RC, Pont-Lezica L, Doorduin J, Klein HC, et al. The immune theory of psychiatric diseases: a key role for activated microglia and circulating monocytes. J Leukoc Biol. 2012;92(5):959–75.

    Article  CAS  PubMed  Google Scholar 

  17. Steiner J, Bernstein HG, Schiltz K, Müller UJ, Westphal S, Drexhage HA, et al. Immune system and glucose metabolism interaction in schizophrenia: a chicken-egg dilemma. Prog Neuropsychopharmacol Biol Psychiatry. 2014;48:287–94.

    Article  CAS  PubMed  Google Scholar 

  18. Yolken RH, Torrey EF. Viruses, schizophrenia, and bipolar disorder. Clin Microbiol Rev. 1995;8(1):131–45.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Torrey EF, Bartko JJ, Lun ZR, Yolken RH. Antibodies to toxoplasma gondii in patients with schizophrenia: a meta-analysis. Schizophr Bull. 2007;33(3):729–36.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Brown AS, Begg MD, Gravenstein S, Schaefer CA, Wyatt RJ, Bresnahan M, et al. Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch Gen Psychiatry. 2004;61(8):774–80.

    Article  PubMed  Google Scholar 

  21. Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B. Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry. 2011;70(7):663–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Rothermundt M, Arolt V, Weitzsch C, Eckhoff D, Kirchner H. Immunological dysfunction in schizophrenia: a systematic approach. Neuropsychobiology. 1998;37(4):186–93.

    Article  CAS  PubMed  Google Scholar 

  23. Nikkilä HV, Müller K, Ahokas A, Miettinen K, Rimon R, Andersson LC. Accumulation of macrophages in the CSF of schizophrenic patients during acute psychotic episodes. Am J Psychiatry. 1999;156(11):1725–9.

    PubMed  Google Scholar 

  24. Steiner J, Gos T, Bogerts B, Bielau H, Drexhage HA, Bernstein HG. Possible impact of microglial cells and the monocyte-macrophage system on suicidal behavior. CNS Neurol Disord Drug Targets. 2013;12(7):971–9.

    Article  CAS  PubMed  Google Scholar 

  25. Busse S, Busse M, Schiltz K, Bielau H, Gos T, Brisch R, et al. Different distribution patterns of lymphocytes and microglia in the hippocampus of patients with residual versus paranoid schizophrenia: Further evidence for disease course-related immune alterations? Brain Behav Immun. 2012;26(8):1273–9.

    Article  CAS  PubMed  Google Scholar 

  26. Doorduin J, de Vries EF, Willemsen AT, de Groot JC, Dierckx RA, Klein HC. Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med. 2009;50(11):1801–7.

    Article  PubMed  Google Scholar 

  27. van Berckel BN, Bossong MG, Boellaard R, Kloet R, Schuitemaker A, Caspers E, et al. Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol Psychiatry. 2008;64(9):820–2.

    Article  PubMed  Google Scholar 

  28. Juckel G, Manitz MP, Brüne M, Friebe A, Heneka MT, Wolf RJ. Microglial activation in a neuroinflammational animal model of schizophrenia: a pilot study. Schizophr Res. 2011;131(1–3):96–100.

    Article  PubMed  Google Scholar 

  29. Manitz MP, Esslinger M, Wachholz S, Plumper J, Friebe A, Juckel G, et al. The role of microglia during life span in neuropsychiatric disease: an animal study. Schizophr Res. 2013;143(1):221–2.

    Article  PubMed  Google Scholar 

  30. Benros ME, Nielsen PR, Nordentoft M, Eaton WW, Dalton SO, Mortensen PB. Autoimmune diseases and severe infections as risk factors for schizophrenia: a 30-year population-based register study. Am J Psychiatry. 2011;168(12):1303–10.

    Article  PubMed  Google Scholar 

  31. Ezeoke A, Mellor A, Buckley P, Miller B. A systematic, quantitative review of blood autoantibodies in schizophrenia. Schizophr Res. 2013;150(1):245–51.

    Article  PubMed  Google Scholar 

  32. Bernstein HG, Steiner J, Guest PC, Dobrowolny H, Bogerts B. Glial cells as key players in schizophrenia pathology: recent insights and concepts of therapy. Schizophr Res. 2015;161(1):4–18.

    Article  PubMed  Google Scholar 

  33. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, et al. Common variants conferring risk of schizophrenia. Nature. 2009;460(7256):744–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421–7.

    Article  PubMed Central  Google Scholar 

  35. Levite M. Neurotransmitters activate T-cells and elicit crucial functions via neurotransmitter receptors. Curr Opin Pharmacol. 2008;8(4):460–71.

    Article  CAS  PubMed  Google Scholar 

  36. Ferrari M, Cosentino M, Marino F, Bombelli R, Rasini E, Lecchini S, et al. Dopaminergic D1-like receptor-dependent inhibition of tyrosine hydroxylase mRNA expression and catecholamine production in human lymphocytes. Biochem Pharmacol. 2004;67(5):865–73.

    Article  CAS  PubMed  Google Scholar 

  37. Kirillova GP, Hrutkay RJ, Shurin MR, Shurin GV, Tourkova IL, Vanyukov MM. Dopamine receptors in human lymphocytes: radioligand binding and quantitative RT-PCR assays. J Neurosci Methods. 2008;174(2):272–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. McKenna F, McLaughlin PJ, Lewis BJ, Sibbring GC, Cummerson JA, Bowen-Jones D, et al. Dopamine receptor expression on human T- and B-lymphocytes, monocytes, neutrophils, eosinophils and NK cells: a flow cytometric study. J Neuroimmunol. 2002;132(1–2):34–40.

    Article  CAS  PubMed  Google Scholar 

  39. Nakano K, Higashi T, Hashimoto K, Takagi R, Tanaka Y, Matsushita S. Antagonizing dopamine D1-like receptor inhibits Th17 cell differentiation: preventive and therapeutic effects on experimental autoimmune encephalomyelitis. Biochem Biophys Res Commun. 2008;373(2):286–91.

    Article  CAS  PubMed  Google Scholar 

  40. Nakano K, Higashi T, Takagi R, Hashimoto K, Tanaka Y, Matsushita S. Dopamine released by dendritic cells polarizes Th2 differentiation. International Immunol. 2009;21(6):645–54.

    Article  CAS  Google Scholar 

  41. Amenta F, Bronzetti E, Cantalamessa F, El-Assouad D, Felici L, Ricci A, et al. Identification of dopamine plasma membrane and vesicular transporters in human peripheral blood lymphocytes. J Neuroimmunol. 2001;117(1–2):133–42.

    Article  CAS  PubMed  Google Scholar 

  42. Mill J, Asherson P, Browes C, D’Souza U, Craig I. Expression of the dopamine transporter gene is regulated by the 3′ UTR VNTR: evidence from brain and lymphocytes using quantitative RT-PCR. Am J Med Genet. 2002;114(8):975–9.

    Article  PubMed  Google Scholar 

  43. Affaticati P, Mignen O, Jambou F, Potier MC, Klingel-Schmitt I, Degrouard J, et al. Sustained calcium signalling and caspase-3 activation involve NMDA receptors in thymocytes in contact with dendritic cells. Cell Death Differ. 2011;18(1):99–108.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Pacheco R, Oliva H, Martinez-Navio JM, Climent N, Ciruela F, Gatell JM, et al. Glutamate released by dendritic cells as a novel modulator of T cell activation. J Immunol. 2006;177(10):6695–704.

    Article  CAS  PubMed  Google Scholar 

  45. Kahlfuss S, Simma N, Mankiewicz J, Bose T, Lowinus T, Klein-Hessling S, et al. Immunosuppression by N-methyl-d-aspartate receptor antagonists is mediated through inhibition of Kv1.3 and KCa3.1 channels in T cells. Mol Cell Biol. 2014;34(5):820–31.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Lombardi G, Dianzani C, Miglio G, Canonico PL, Fantozzi R. Characterization of ionotropic glutamate receptors in human lymphocytes. Br J Pharmacol. 2001;133(6):936–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Nedergaard M, Takano T, Hansen AJ. Beyond the role of glutamate as a neurotransmitter. Nat Rev Neurosci. 2002;3(9):748–55.

    Article  CAS  PubMed  Google Scholar 

  48. Pacheco R, Gallart T, Lluis C, Franco R. Role of glutamate on T-cell mediated immunity. J Neuroimmunol. 2007;185(1–2):9–19.

    Article  CAS  PubMed  Google Scholar 

  49. Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ. Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci. 2012;13(7):465–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Gos T, Myint AM, Schiltz K, Meyer-Lotz G, Dobrowolny H, Busse S, et al. Reduced microglial immunoreactivity for endogenous NMDA receptor agonist quinolinic acid in the hippocampus of schizophrenia patients. Brain Behav Immun. 2014;41:59–64.

    Article  CAS  PubMed  Google Scholar 

  51. Coutinho E, Harrison P, Vincent A. Do neuronal autoantibodies cause psychosis? A neuroimmunological perspective. Biol Psychiatry. 2014;75(4):269–75.

    CAS  Google Scholar 

  52. Lehmann-Facius H. Ueber die liquordiagnose der schizophrenien. Klin Wochenschr. 1937;16:1646–8.

    Article  Google Scholar 

  53. Stoecker W, Saschenbrecker S, Rentzsch K, Komorowski L, Probst C. Autoantibody diagnostics in neurology using native and recombinant antigenic substrates. Nervenarzt. 2013;84(4):471–6.

    Article  Google Scholar 

  54. Fritzler MJ. Autoantibody markers: diagnostic utility for diagnosis of encephalitis, paraneoplastic syndromes, and ataxia. Clin Lab News. 2012;38(3):8–10.

    Google Scholar 

  55. Gunduz-Bruce H. The acute effects of NMDA antagonism: from the rodent to the human brain. Brain Res Rev. 2009;60(2):279–86.

    Article  CAS  PubMed  Google Scholar 

  56. Vollenweider FX, Kometer M. The neurobiology of psychedelic drugs: implications for the treatment of mood disorders. Nat Rev Neurosci. 2010;11(9):642–51.

    Article  CAS  PubMed  Google Scholar 

  57. Diamond B, Huerta PT, Mina-Osorio P, Kowal C, Volpe BT. Losing your nerves? Maybe it’s the antibodies. Nat Rev Immunol. 2009;9(6):449–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Dalmau J, Tuzun E, Wu HY, Masjuan J, Rossi JE, Voloschin A, et al. Paraneoplastic anti-N-methyl-d-aspartate receptor encephalitis associated with ovarian teratoma. Ann Neurol. 2007;61(1):25–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Dalmau J, Lancaster E, Martinez-Hernandez E, Rosenfeld MR, Balice-Gordon R. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol. 2011;10(1):63–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Pru¨ss H, Dalmau J, Arolt V, Wandinger KP. Anti-NMDA-rezeptor-enzephalitis: ein interdisziplina¨res krankheitsbild. Ner-venarzt. 2010;81(4):396–408.

  61. Bechter K. Updating the mild encephalitis hypothesis of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2013;42:71–91.

  62. Zandi MS, Irani SR, Lang B, Waters P, Jones PB, McKenna P, et al. Disease-relevant autoantibodies in first episode schizophrenia. J Neurol. 2011;258(4):686–8.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Tsutsui K, Kanbayashi T, Tanaka K, Boku S, Ito W, Tokunaga J, et al. Anti-NMDA-receptor antibody detected in encephalitis, schizophrenia, and narcolepsy with psychotic features. BMC Psychiatry. 2012;12(1):37.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Masdeu JC, Gonzalez-Pinto A, Matute C, Ruiz De Azua S, Palomino A, De Leon J, et al. Serum IgG antibodies against the NR1 subunit of the NMDA receptor not detected in schizophrenia. Am J Psychiatry. 2012;169(10):1120–1.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Kayser MS, Titulaer MJ, Gresa-Arribas N, Dalmau J. Frequency and characteristics of isolated psychiatric episodes in anti-N-methyl-d-aspartate receptor encephalitis. JAMA Neurol. 2013;70(9):1133–9.

    Article  PubMed  Google Scholar 

  66. Haussleiter IS, Emons B, Schaub M, Borowski K, Brüne M, Wandinger KP, et al. Investigation of antibodies against synaptic proteins in a cross-sectional cohort of psychotic patients. Schizophr Res. 2012;140(1–3):258–9.

    Article  PubMed  Google Scholar 

  67. Hammer C, Stepniak B, Schneider A, Papiol S, Tantra M, Begemann M, et al. Neuropsychiatric disease relevance of circulating anti-NMDA receptor autoantibodies depends on blood-brain barrier integrity. Mol Psychiatry. 2014;19(10):1143–9.

    Article  CAS  PubMed  Google Scholar 

  68. Abeles AM, Abeles M. The clinical utility of a positive antinuclear antibody test result. Am J Med. 2013;126(4):342–8.

    Article  PubMed  Google Scholar 

  69. Winter WE, Schatz DA. Autoimmune markers in diabetes. Clin Chem. 2011;57(2):168–75.

    Article  CAS  PubMed  Google Scholar 

  70. Prüss H, Finke C, Holtje M, Hofmann J, Klingbeil C, Probst C, et al. N-Methyl-d-aspartate receptor antibodies in herpes simplex encephalitis. Ann Neurol. 2012;72(6):902–11.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Carlsson A, Lindqvist M. Effect of chlorpromazine or haloperidol on formation of 3methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol (Copenh). 1963;20:140–4.

    Article  CAS  PubMed  Google Scholar 

  72. Laruelle M. Schizophrenia: from dopaminergic to glutamatergic interventions. Curr Opin Pharmacol. 2014;14C:97–102.

    Article  Google Scholar 

  73. von Kirchbach A, Fischer EG, Kornhuber HH. Failure to detect dopamine receptor IgG autoantibodies in sera of schizophrenic patients. Short note. J Neural Transm. 1987;70(1–2):175–9.

    Article  Google Scholar 

  74. Tanaka S, Matsunaga H, Kimura M, Tatsumi K, Hidaka Y, Takano T, et al. Autoantibodies against four kinds of neurotransmitter receptors in psychiatric disorders. J Neuroimmunol. 2003;141(1–2):155–64.

    Article  CAS  PubMed  Google Scholar 

  75. Pathmanandavel K, Starling J, Merheb V, Ramanathan S, Sinmaz N, Dale RC, et al. Antibodies to surface dopamine-2 receptor and N-methyl-d-aspartate receptor in the first episode of acute psychosis in children. Biol Psychiatry [Epub 23 Jul 2014]. doi:10.1016/j.biopsych.2014.07.014.

  76. Jones AL, Mowry BJ, McLean DE, Mantzioris BX, Pender MP, Greer JM. Elevated levels of autoantibodies targeting the M1 muscarinic acetylcholine receptor and neurofilament medium in sera from subgroups of patients with schizophrenia. J Neuroimmunol. 2014;269(1–2):68–75.

    Article  CAS  PubMed  Google Scholar 

  77. Mukherjee S, Mahadik SP, Korenovsky A, Laev H, Schnur DB, Reddy R. Serum antibodies to nicotinic acetylcholine receptors in schizophrenic patients. Schizophr Res. 1994;12(2):131–6.

    Article  CAS  PubMed  Google Scholar 

  78. Chandley MJ, Miller MN, Kwasigroch CN, Wilson TD, Miller BE. Increased antibodies for the alpha7 subunit of the nicotinic receptor in schizophrenia. Schizophr Res. 2009;109(1–3):98–101.

    Article  PubMed  Google Scholar 

  79. Halliday MR, Pomara N, Sagare AP, Mack WJ, Frangione B, Zlokovic BV. Relationship between cyclophilin a levels and matrix metalloproteinase 9 activity in cerebrospinal fluid of cognitively normal apolipoprotein e4 carriers and blood-brain barrier breakdown. JAMA Neurol. 2013;70(9):1198–200.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Hammer C, Zerche M, Schneider A, Begemann M, Nave KA, Ehrenreich H. Apolipoprotein E4 carrier status plus circulating anti-NMDAR1 autoantibodies: association with schizoaffective disorder. Mol Psychiatry. 2014;19(10):1054–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Bechter K, Schreiner V, Herzog S, Breitinger N, Wollinsky KH, Brinkmeier H, et al. Cerebrospinal fluid filtration as experimental therapy in therapy refractory psychoses in Borna disease virus seropositive patients. Therapeutic effects, findings [in German]. Psychiatr Prax. 2003;30(Suppl 2):S216–20.

    PubMed  Google Scholar 

  82. Steiner J, Jacobs R, Panteli B, Brauner M, Schiltz K, Bahn S, et al. Acute schizophrenia is accompanied by reduced T cell and increased B cell immunity. Eur Arch Psychiatry Clin Neurosci. 2010;260:509–18.

    Article  PubMed  Google Scholar 

  83. Hinze-Selch D, Becker EW, Stein GM, Berg PA, Mullington J, Holsboer F, et al. Effects of clozapine on in vitro immune parameters: a longitudinal study in clozapine-treated schizophrenic patients. Neuropsychopharmacology. 1998;19(2):114–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Paul Guest (Cambridge, UK) provided language editing of the manuscript, as a native speaker.

Disclosures

Johann Steiner, Kolja Schiltz, Hans-Gert Bernstein, and Bernhard Bogerts declare that there are no conflicts of interest. No funding was received for the preparation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Steiner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steiner, J., Schiltz, K., Bernstein, HG. et al. Antineuronal Antibodies Against Neurotransmitter Receptors and Synaptic Proteins in Schizophrenia: Current Knowledge and Clinical Implications. CNS Drugs 29, 197–206 (2015). https://doi.org/10.1007/s40263-015-0233-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-015-0233-3

Keywords

Navigation