Skip to main content
Log in

The Pharmacogenetics of Tramadol

  • Systematic Review
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objective

Tramadol hydrochloride is used worldwide as an analgesic drug with a unique dual function. The metabolic enzymes cytochrome P450 (CYP) 3A4, CYP2B6, and CYP2D6 and the various transporters [adenosine triphosphate-binding cassette B1/multidrug resistance 1/P-glycoprotein, organic cation transporter 1, serotonin transporter (SERT), norepinephrine transporter (NET)] and receptor genes (opioid receptor μ 1 gene) give possible genetic differences that might affect the pharmacokinetics and/or pharmacodynamics of tramadol. Therefore, the aim of this review is to present a systematic walkthrough of all possible genetic factors involved in the pharmacology of tramadol.

Method

A systematic literature search was conducted in PubMed and EMBASE involving all metabolic enzymes, drug transporters and receptors, as well as SERT and NET that are involved in the pharmacokinetics and pharmacodynamics of tramadol. An additional search on population pharmacokinetics with genetic factors as covariates was performed separately.

Results

A total of 56 studies (45 cohort and case-control studies, three case reports, six in vitro studies, and two animal studies) were included.

Conclusion

In this systematic review, the current knowledge on all possible genetic factors that might influence the metabolism or clinical efficacy of tramadol has been collected and summarized. Only the effect of CYP2D6 polymorphisms on the metabolism of tramadol and the consequent effect on pain relief has been thoroughly studied and sufficiently established as clinically relevant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Grond S, Sablotzki A. Clinical pharmacology of tramadol. Clin Pharmacokinet. 2004;43:879–923.

    Article  CAS  PubMed  Google Scholar 

  2. Kizilbash A, Ngô-Minh CT. Review of extended-release formulations of tramadol for the management of chronic non-cancer pain: focus on marketed formulations. J Pain Res. 2014;7:149–61. doi:10.2147/JPR.S49502.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Pedersen RS, Damkier P, Brosen K. Tramadol as a new probe for cytochrome P450 2D6 phenotyping: a population study. Clin Pharmacol Ther. 2005;77:458–67. doi:10.1016/j.clpt.2005.01.014.

    Article  CAS  PubMed  Google Scholar 

  4. Cicero TJ, Adams EH, Geller A, et al. A postmarketing surveillance program to monitor Ultram (tramadol hydrochloride) abuse in the United States. Drug Alcohol Depend. 1999;57:7–22.

    Article  CAS  PubMed  Google Scholar 

  5. Danish Health and Medicines Authority. Summary of product characteristics: tramadol. Danish Health and Medicines Authority. 2015. http://www.produktresume.dk/docushare/dsweb/View/Collection-116.

  6. Sindrup SH, Andersen G, Madsen C, et al. Tramadol relieves pain and allodynia in polyneuropathy: a randomised, double-blind, controlled trial. Pain. 1999;83:85–90.

    Article  CAS  PubMed  Google Scholar 

  7. Gong L, Stamer UM, Tzvetkov MV, et al. PharmGKB summary: tramadol pathway. Pharmacogenet Genomics 2014.

  8. Bastami S, Haage P, Kronstrand R, et al. Pharmacogenetic aspects of tramadol pharmacokinetics and pharmacodynamics after a single oral dose. Forensic Sci Int. 2014;238:125–32. doi:10.1016/j.forsciint.2014.03.003.

    Article  CAS  PubMed  Google Scholar 

  9. Gillen C, Haurand M, Kobelt DJ, Wnendt S. Affinity, potency and efficacy of tramadol and its metabolites at the cloned human mu-opioid receptor. Naunyn Schmiedebergs Arch Pharmacol. 2000;362:116–21.

    Article  CAS  PubMed  Google Scholar 

  10. Fliegert F, Kurth B, Gohler K. The effects of tramadol on static and dynamic pupillometry in healthy subjects: the relationship between pharmacodynamics, pharmacokinetics and CYP2D6 metaboliser status. Eur J Clin Pharmacol. 2005;61:257–66. doi:10.1007/s00228-005-0920-y.

    Article  CAS  PubMed  Google Scholar 

  11. Slanar O, Nobilis M, Kvetina J, et al. Miotic action of tramadol is determined by CYP2D6 genotype. Physiol Res Acad Sci Bohemoslov. 2007;56:129–36.

    CAS  Google Scholar 

  12. Matouskova O, Slanar O, Chytil L, Perlik F. Pupillometry in healthy volunteers as a biomarker of tramadol efficacy. J Clin Pharm Ther. 2011;36:513–7. doi:10.1111/j.1365-2710.2010.01203.x.

    Article  CAS  PubMed  Google Scholar 

  13. Stoops WW, Lofwall MR, Nuzzo PA, et al. Pharmacodynamic profile of tramadol in humans: influence of naltrexone pretreatment. Psychopharmacology (Berl). 2012;223:427–38. doi:10.1007/s00213-012-2739-4.

    Article  CAS  Google Scholar 

  14. Minami K, Uezono Y, Ueta Y. Pharmacological aspects of the effects of tramadol on G-protein coupled receptors. J Pharmacol Sci. 2007;103:253–60.

    Article  CAS  PubMed  Google Scholar 

  15. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151:264–9. doi:10.7326/0003-4819-151-4-200908180-00135.

    Article  PubMed  Google Scholar 

  16. Garcia-Quetglas E, Azanza JR, Sadaba B, et al. Pharmacokinetics of tramadol enantiomers and their respective phase I metabolites in relation to CYP2D6 phenotype. Pharmacol Res Off J Ital Pharmacol Soc. 2007;55:122–30. doi:10.1016/j.phrs.2006.11.003.

    CAS  Google Scholar 

  17. Zhou S-F. Polymorphism of human cytochrome P450 2D6 and its clinical significance: part I. Clin Pharmacokinet. 2009;48:689–723. doi:10.2165/11318030-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  18. Borlak J, Hermann R, Erb K, Thum T. A rapid and simple CYP2D6 genotyping assay: case study with the analgetic tramadol. Metabolism. 2003;52:1439–43.

    Article  CAS  PubMed  Google Scholar 

  19. Hicks JK, Swen JJ, Gaedigk A. Challenges in CYP2D6 phenotype assignment from genotype data: a critical assessment and call for standardization. Curr Drug Metab. 2014;15:218–32.

    Article  CAS  PubMed  Google Scholar 

  20. Gaedigk A, Simon SD, Pearce RE, et al. The CYP2D6 activity score: translating genotype information into a qualitative measure of phenotype. Clin Pharmacol Ther. 2008;83:234–42. doi:10.1038/sj.clpt.6100406.

    Article  CAS  PubMed  Google Scholar 

  21. Kirchheiner J. CYP2D6 phenotype prediction from genotype: which system is the best? Clin Pharmacol Ther. 2008;83:225–7. doi:10.1038/sj.clpt.6100455.

    Article  CAS  PubMed  Google Scholar 

  22. CYP2D6. In: PharmGKB. http://www.pharmgkb.org/gene/PA128. Accessed 17 Feb 2015.

  23. Human cytochrome P450 (CYP) Allele Nomenclature Committee. http://www.cypalleles.ki.se/. Accessed 19 Jan 2015.

  24. Paar WD, Frankus P, Dengler HJ. The metabolism of tramadol by human liver microsomes. Clin Investig. 1992;70:708–10.

    Article  CAS  PubMed  Google Scholar 

  25. Laugesen S, Enggaard TP, Pedersen RS, et al. Paroxetine, a cytochrome P450 2D6 inhibitor, diminishes the stereoselective O-demethylation and reduces the hypoalgesic effect of tramadol. Clin Pharmacol Ther. 2005;77:312–23.

    Article  CAS  PubMed  Google Scholar 

  26. Nielsen AG, Pedersen RS, Noehr-Jensen L, et al. Two separate dose-dependent effects of paroxetine: mydriasis and inhibition of tramadol’s O-demethylation via CYP2D6. Eur J Clin Pharmacol. 2010;66:655–60. doi:10.1007/s00228-010-0803-8.

    Article  CAS  PubMed  Google Scholar 

  27. Noehr-Jensen L, Zwisler ST, Larsen F, et al. Escitalopram is a weak inhibitor of the CYP2D6-catalyzed O-demethylation of (+)-tramadol but does not reduce the hypoalgesic effect in experimental pain. Clin Pharmacol Ther. 2009;86:626–33. doi:10.1038/clpt.2009.154.

    Article  CAS  PubMed  Google Scholar 

  28. Coller JK, Michalakas JR, James HM, et al. Inhibition of CYP2D6-mediated tramadol O-demethylation in methadone but not buprenorphine maintenance patients. Br J Clin Pharmacol. 2012;74:835–41. doi:10.1111/j.1365-2125.2012.04256.x.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Hedenmalm K, Lindh JD, Sawe J, Rane A. Increased liability of tramadol-warfarin interaction in individuals with mutations in the cytochrome P450 2D6 gene. Eur J Clin Pharmacol. 2004;60:369–72. doi:10.1007/s00228-004-0783-7.

    Article  CAS  PubMed  Google Scholar 

  30. Poulsen L, Arendt-Nielsen L, Brøsen K, Sindrup SH. The hypoalgesic effect of tramadol in relation to CYP2D6. Clin Pharmacol Ther. 1996;60:636–44. doi:10.1016/S0009-9236(96)90211-8.

    Article  CAS  PubMed  Google Scholar 

  31. Pedersen RS, Damkier P, Brøsen K. Enantioselective pharmacokinetics of tramadol in CYP2D6 extensive and poor metabolizers. Eur J Clin Pharmacol. 2006;62:513–21. doi:10.1007/s00228-006-0135-x.

    Article  CAS  PubMed  Google Scholar 

  32. Enggaard TP, Poulsen L, Arendt-Nielsen L, et al. The analgesic effect of tramadol after intravenous injection in healthy volunteers in relation to CYP2D6. Anesth Analg. 2006;102:146–50. doi:10.1213/01.ane.0000189613.61910.32.

    Article  CAS  PubMed  Google Scholar 

  33. Stamer UM, Musshoff F, Kobilay M, et al. Concentrations of tramadol and O-desmethyltramadol enantiomers in different CYP2D6 genotypes. Clin Pharmacol Ther. 2007;82:41–7. doi:10.1038/sj.clpt.6100152.

    Article  CAS  PubMed  Google Scholar 

  34. Halling J, Weihe P, Brosen K. CYP2D6 polymorphism in relation to tramadol metabolism: a study of faroese patients. Ther Drug Monit. 2008;30:271–5. doi:10.1097/FTD.0b013e3181666b2f.

    Article  CAS  PubMed  Google Scholar 

  35. Levo A, Koski A, Ojanpera I, et al. Post-mortem SNP analysis of CYP2D6 gene reveals correlation between genotype and opioid drug (tramadol) metabolite ratios in blood. Forensic Sci Int. 2003;135:9–15.

    Article  CAS  PubMed  Google Scholar 

  36. Paar WD, Poche S, Gerloff J, Dengler HJ. Polymorphic CYP2D6 mediates O-demethylation of the opioid analgesic tramadol. Eur J Clin Pharmacol. 1997;53:235–9.

    Article  CAS  PubMed  Google Scholar 

  37. Stamer UM, Lehnen K, Hothker F, et al. Impact of CYP2D6 genotype on postoperative tramadol analgesia. Pain. 2003;105:231–8.

    Article  CAS  PubMed  Google Scholar 

  38. Sindrup SH, Madsen C, Brøsen K, Jensen TS. The effect of tramadol in painful polyneuropathy in relation to serum drug and metabolite levels. Clin Pharmacol Ther. 1999;66:636–41. doi:10.1053/cp.1999.v66.103171001.

    Article  CAS  PubMed  Google Scholar 

  39. Stamer UM, Stuber F, Muders T, Musshoff F. Respiratory depression with tramadol in a patient with renal impairment and CYP2D6 gene duplication. Anesth Analg. 2008;107:926–9. doi:10.1213/ane.0b013e31817b796e.

    Article  PubMed  Google Scholar 

  40. Elkalioubie A, Allorge D, Robriquet L, et al. Near-fatal tramadol cardiotoxicity in a CYP2D6 ultrarapid metabolizer. Eur J Clin Pharmacol. 2011;67:855–8. doi:10.1007/s00228-011-1080-x.

    Article  CAS  PubMed  Google Scholar 

  41. Wang G, Zhang H, He F, Fang X. Effect of the CYP2D6*10 C188T polymorphism on postoperative tramadol analgesia in a Chinese population. Eur J Clin Pharmacol. 2006;62:927–31. doi:10.1007/s00228-006-0191-2.

    Article  CAS  PubMed  Google Scholar 

  42. Shen H, He MM, Liu H, et al. Comparative metabolic capabilities and inhibitory profiles of CYP2D6.1, CYP2D6.10, and CYP2D6.17. Drug Metab Dispos Biol Fate Chem. 2007;35:1292–300. doi:10.1124/dmd.107.015354.

    Article  CAS  PubMed  Google Scholar 

  43. Gan SH, Ismail R, Wan Adnan WA, Wan Z. Correlation of tramadol pharmacokinetics and CYP2D6*10 genotype in Malaysian subjects. J Pharm Biomed Anal. 2002;30:189–95.

    Article  CAS  PubMed  Google Scholar 

  44. Li Q, Wang R, Guo Y, et al. Relationship of CYP2D6 genetic polymorphisms and the pharmacokinetics of tramadol in Chinese volunteers. J Clin Pharm Ther. 2010;35:239–47. doi:10.1111/j.1365-2710.2009.01102.x.

    Article  CAS  PubMed  Google Scholar 

  45. Xu J, Zhang X-C, Lv X-Q, et al. Effect of the cytochrome P450 2D6*10 genotype on the pharmacokinetics of tramadol in post-operative patients. Pharm. 2014;69:138–41.

    CAS  Google Scholar 

  46. Nasare NV, Banerjee BD, Suryakantrao Deshmukh P, et al. CYP2D6*2 polymorphism as a predictor of failed outpatient tramadol therapy in postherpetic neuralgia patients. Am J Ther. 2013. doi:10.1097/MJT.0b013e31826fc491.

    PubMed  Google Scholar 

  47. Kirchheiner J, Keulen J-THA, Bauer S, et al. Effects of the CYP2D6 gene duplication on the pharmacokinetics and pharmacodynamics of tramadol. J Clin Psychopharmacol. 2008. doi:10.1097/JCP.0b013e318160f827.

    PubMed  Google Scholar 

  48. Allegaert K, Rochette A, Veyckemans F. Developmental pharmacology of tramadol during infancy: ontogeny, pharmacogenetics and elimination clearance. Paediatr Anaesth. 2011;21:266–73. doi:10.1111/j.1460-9592.2010.03389.x.

    Article  PubMed  Google Scholar 

  49. Allegaert K, Anderson BJ, Verbesselt R, et al. Tramadol disposition in the very young: an attempt to assess in vivo cytochrome. Br J Anaesth. 2005;95:231–9. doi:10.1093/bja/aei170.

    Article  CAS  PubMed  Google Scholar 

  50. Allegaert K, Van den Anker JN, Verbesselt R, et al. O-Demethylation of tramadol in the first months of life. Eur J Clin Pharmacol. 2005;61:837–42. doi:10.1007/s00228-005-0045-3.

    Article  CAS  PubMed  Google Scholar 

  51. Allegaert K, van den Anker JN, de Hoon JN, et al. Covariates of tramadol disposition in the first months of life. Br J Anaesth. 2008;100:525–32. doi:10.1093/bja/aen019.

    Article  CAS  PubMed  Google Scholar 

  52. Allegaert K, van Schaik RHN, Vermeersch S, et al. Postmenstrual age and CYP2D6 polymorphisms determine tramadol o-demethylation in critically ill neonates and infants. Pediatr Res. 2008;63:674–9. doi:10.1203/PDR.0b013e31816ff712.

    Article  CAS  PubMed  Google Scholar 

  53. Subrahmanyam V, Renwick AB, Walters DG, et al. Identification of cytochrome P-450 isoforms responsible for cis-tramadol metabolism in human liver microsomes. Drug Metab Dispos Biol Fate Chem. 2001;29:1146–55.

    CAS  PubMed  Google Scholar 

  54. Werk AN, Cascorbi I. Functional gene variants of CYP3A4. Clin Pharmacol Ther. 2014;96:340–8. doi:10.1038/clpt.2014.129.

    Article  CAS  PubMed  Google Scholar 

  55. McGraw J, Waller D. Cytochrome P450 variations in different ethnic populations. Expert Opin Drug Metab Toxicol. 2012;8:371–82. doi:10.1517/17425255.2012.657626.

    Article  CAS  PubMed  Google Scholar 

  56. Hagelberg NM, Saarikoski T, Saari TI, et al. Ticlopidine inhibits both O-demethylation and renal clearance of tramadol, increasing the exposure to it, but itraconazole has no marked effect on the ticlopidine-tramadol interaction. Eur J Clin Pharmacol. 2013;69:867–75. doi:10.1007/s00228-012-1433-0.

    Article  PubMed  Google Scholar 

  57. Lehtonen P, Sten T, Aitio O, et al. Glucuronidation of racemic O-desmethyltramadol, the active metabolite of tramadol. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 2010;41:523–30. doi:10.1016/j.ejps.2010.08.005.

    CAS  Google Scholar 

  58. Bhasker CR, McKinnon W, Stone A, et al. Genetic polymorphism of UDP-glucuronosyltransferase 2B7 (UGT2B7) at amino acid 268: ethnic diversity of alleles and potential clinical significance. Pharmacogenetics. 2000;10:679–85.

    Article  CAS  PubMed  Google Scholar 

  59. Tzvetkov MV, Saadatmand AR, Lötsch J, et al. Genetically polymorphic OCT1: another piece in the puzzle of the variable pharmacokinetics and pharmacodynamics of the opioidergic drug tramadol. Clin Pharmacol Ther. 2011;90:143–50. doi:10.1038/clpt.2011.56.

    Article  CAS  PubMed  Google Scholar 

  60. Ameyaw MM, Regateiro F, Li T, et al. MDR1 pharmacogenetics: frequency of the C3435T mutation in exon 26 is significantly influenced by ethnicity. Pharmacogenetics. 2001;11:217–21.

    Article  CAS  PubMed  Google Scholar 

  61. Kanaan M, Daali Y, Dayer P, Desmeules J. Uptake/efflux transport of tramadol enantiomers and O-desmethyl-tramadol: focus on P-glycoprotein. Basic Clin Pharmacol Toxicol. 2009;105:199–206. doi:10.1111/j.1742-7843.2009.00428.x.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Slanar O, Nobilis M, Kvetina J, et al. Pharmacokinetics of tramadol is affected by MDR1 polymorphism C3435T. Eur J Clin Pharmacol. 2007;63:419–21. doi:10.1007/s00228-006-0255-3.

    Article  PubMed  Google Scholar 

  63. Slanar O, Dupal P, Matouskova O, et al. Tramadol efficacy in patients with postoperative pain in relation to CYP2D6 and MDR1 polymorphisms. Bratisl Lekárske Listy. 2012;113:152–5.

    CAS  Google Scholar 

  64. Zhao Q, Sun J, Tao Y, et al. A logistic equation to determine the validity of tramadol from related gene polymorphisms and psychological factors. Pharmacogenomics. 2014;15:487–95. doi:10.2217/pgs.14.22.

    Article  CAS  PubMed  Google Scholar 

  65. Enabah D, El Baz H, Moselhy H. Higher frequency of C.3435 of the ABCB1 gene in patients with tramadol dependence disorder. Am J Drug Alcohol Abuse. 2014;40:317–20. doi:10.3109/00952990.2014.925468.

    Article  PubMed  Google Scholar 

  66. Fox MA, Jensen CL, Murphy DL. Tramadol and another atypical opioid meperidine have exaggerated serotonin syndrome behavioural effects, but decreased analgesic effects, in genetically deficient serotonin transporter (SERT) mice. Int J Neuropsychopharmacol Off Sci J Coll Int Neuropsychopharmacol CINP. 2009;12:1055–65. doi:10.1017/S146114570900011X.

    CAS  Google Scholar 

  67. Noskova T, Pivac N, Nedic G, et al. Ethnic differences in the serotonin transporter polymorphism (5-HTTLPR) in several European populations. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:1735–9. doi:10.1016/j.pnpbp.2008.07.012.

    Article  CAS  PubMed  Google Scholar 

  68. Ng CH, Easteal S, Tan S, et al. Serotonin transporter polymorphisms and clinical response to sertraline across ethnicities. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30:953–7. doi:10.1016/j.pnpbp.2006.02.015.

    Article  CAS  PubMed  Google Scholar 

  69. Rauers NI, Stuber F, Lee E-H, et al. Antagonistic effects of ondansetron and tramadol? A randomized placebo and active drug controlled study. J Pain Off J Am Pain Soc. 2010;11:1274–81. doi:10.1016/j.jpain.2010.03.003.

    Article  CAS  Google Scholar 

  70. Zhao X, Huang Y, Ma H, et al. Association between major depressive disorder and the norepinephrine transporter polymorphisms T-182C and G1287A: a meta-analysis. J Affect Disord. 2013;150:23–8. doi:10.1016/j.jad.2013.03.016.

    Article  CAS  PubMed  Google Scholar 

  71. Sagata K, Minami K, Yanagihara N, et al. Tramadol inhibits norepinephrine transporter function at desipramine-binding sites in cultured bovine adrenal medullary cells. Anesth Analg. 2002;94:901–6 (table of contents).

    Article  CAS  PubMed  Google Scholar 

  72. Liu Y-C, Wang W-S. Human mu-opioid receptor gene A118G polymorphism predicts the efficacy of tramadol/acetaminophen combination tablets (ultracet) in oxaliplatin-induced painful neuropathy. Cancer. 2012;118:1718–25. doi:10.1002/cncr.26430.

    Article  CAS  PubMed  Google Scholar 

  73. De Capraris A, Cinnella G, Marolla A, et al. Micro opioid receptor A118G polymorphism and post-operative pain: opioids’ effects on heterozygous patients. Int J Immunopathol Pharmacol. 2011;24:993–1004.

    PubMed  Google Scholar 

  74. Kim E, Choi C-B, Kang C, Bae S-C. Adverse events in analgesic treatment with tramadol associated with CYP2D6 extensive-metaboliser and OPRM1 high-expression variants. Ann Rheum Dis. 2010;69:1889–90. doi:10.1136/ard.2009.124347.

    Article  CAS  PubMed  Google Scholar 

  75. Allegaert K, Holford N, Anderson BJ, et al. Tramadol and O-desmethyl tramadol clearance maturation and disposition in humans: a pooled pharmacokinetic study. Clin Pharmacokinet. 2014. doi:10.1007/s40262-014-0191-9.

    Google Scholar 

  76. Di Patti F, Fanelli D, Pedersen RS, et al. Modelling the pharmacokinetics of tramadol: on the difference between CYP2D6 extensive and poor metabolizers. J Theor Biol. 2008;254:568–74. doi:10.1016/j.jtbi.2008.06.005.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the research librarian Johan Wallin for his support and advice in the literature research.

Conflict of interest

DL, PD and KB report no conflict of interest. No sources of funding were used in the preparation of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorte Lassen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lassen, D., Damkier, P. & Brøsen, K. The Pharmacogenetics of Tramadol. Clin Pharmacokinet 54, 825–836 (2015). https://doi.org/10.1007/s40262-015-0268-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-015-0268-0

Keywords

Navigation