Skip to main content
Log in

Assessment of the Influence of Inflammation and FCGR3A Genotype on Infliximab Pharmacokinetics and Time to Relapse in Patients with Crohn’s Disease

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives

Infliximab is a monoclonal anti-tumor necrosis factor-α (anti-TNFα) antibody that profoundly modified the treatment of Crohn’s disease (CD). The polymorphism of Fc fragment of IgG, low affinity IIIa, receptor (CD16a) [FCGR3A] influences the biological response to infliximab in patients with CD. Our aim was to study its influence on infliximab pharmacokinetics and risk of relapse after infliximab discontinuation.

Methods

In 111 CD patients in remission, infliximab was discontinued and its concentrations were measured for 30 months or until relapse. Infliximab pharmacokinetics were described using monocompartmental population modeling.

Results

The elimination rate of infliximab increased with C-reactive protein (CRP) [p = 0.00018] and was 16 % higher in FCGR3A-158V/V patients than in F carriers (p = 0.0028). Risk of relapse was higher in patients with baseline CRP ≥5 mg/L than in those with a lower value (p = 0.0000029). In addition, there was a first-order interaction between CRP and the FCGR3A genotype; in patients with high CRP, risk of relapse was higher for V/V patients than for F carriers (hazard ratio 4.80 and 2.84 for V/V and F carriers, respectively; p = 0.013).

Conclusion

Both increased inflammation and FCGR3A-158V/V genotype are associated with increased infliximab elimination and risk of relapse after infliximab discontinuation in patients with CD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. St Clair EW, Wagner CL, Fasanmade AA, Wang B, Schaible T, Kavanaugh A, et al. The relationship of serum infliximab concentrations to clinical improvement in rheumatoid arthritis: results from ATTRACT, a multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2002;46(6):1451–9.

    Article  CAS  PubMed  Google Scholar 

  2. Ternant D, Mulleman D, Lauferon F, Vignault C, Ducourau E, Wendling D, et al. Influence of methotrexate on infliximab pharmacokinetics and pharmacodynamics in ankylosing spondylitis. Br J Clin Pharmacol. 2011;2011(22):1365–2125.

    Google Scholar 

  3. Xu Z, Seitz K, Fasanmade A, Ford J, Williamson P, Xu W, et al. Population pharmacokinetics of infliximab in patients with ankylosing spondylitis. J Clin Pharmacol. 2008;48(6):681–95 (Epub 2008 Apr 9).

    Article  CAS  PubMed  Google Scholar 

  4. Baert F, Noman M, Vermeire S, Van Assche G, D’ Haens G, Carbonez A, et al. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. N Engl J Med. 2003;348(7):601–8.

    Article  CAS  PubMed  Google Scholar 

  5. Fasanmade AA, Adedokun OJ, Blank M, Zhou H, Davis HM. Pharmacokinetic properties of infliximab in children and adults with Crohn’s disease: a retrospective analysis of data from 2 phase III clinical trials. Clin Ther. 2011;33(7):946–64.

    Article  CAS  PubMed  Google Scholar 

  6. Ternant D, Aubourg A, Magdelaine-Beuzelin C, Degenne D, Watier H, Picon L, et al. Infliximab pharmacokinetics in inflammatory bowel disease patients. Ther Drug Monit. 2008;30(4):523–9.

    CAS  PubMed  Google Scholar 

  7. Fasanmade AA, Adedokun OJ, Ford J, Hernandez D, Johanns J, Hu C, et al. Population pharmacokinetic analysis of infliximab in patients with ulcerative colitis. Eur J Clin Pharmacol. 2009;65(12):1211–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Maser EA, Villela R, Silverberg MS, Greenberg GR. Association of trough serum infliximab to clinical outcome after scheduled maintenance treatment for Crohn’s disease. Clin Gastroenterol Hepatol. 2006;4(10):1248–54.

    Article  CAS  PubMed  Google Scholar 

  9. Van Assche G, Magdelaine-Beuzelin C, D’Haens G, Baert F, Noman M, Vermeire S, et al. Withdrawal of immunosuppression in Crohn’s disease treated with scheduled infliximab maintenance: a randomized trial. Gastroenterology. 2008;134(7):1861–8.

    Article  PubMed  Google Scholar 

  10. Bendtzen K, Geborek P, Svenson M, Larsson L, Kapetanovic MC, Saxne T. Individualized monitoring of drug bioavailability and immunogenicity in rheumatoid arthritis patients treated with the tumor necrosis factor alpha inhibitor infliximab. Arthritis Rheum. 2006;54(12):3782–9.

    Article  CAS  PubMed  Google Scholar 

  11. Mulleman D, Chu Miow Lin D, Ducourau E, Emond P, Ternant D, Magdelaine-Beuzelin C, et al. Trough infliximab concentrations predict efficacy and sustained control of disease activity in rheumatoid arthritis. Ther Drug Monit. 2010;32(2):232–6.

    CAS  PubMed  Google Scholar 

  12. Wolbink GJ, Voskuyl AE, Lems WF, de Groot E, Nurmohamed MT, Tak PP, et al. Relationship between serum trough infliximab levels, pretreatment C reactive protein levels, and clinical response to infliximab treatment in patients with rheumatoid arthritis. Ann Rheum Dis. 2005;64(5):704–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Koene HR, Kleijer M, Algra J, Roos D, von dem Borne AE, de Haas M. Fc gammaRIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell Fc gammaRIIIa, independently of the Fc gammaRIIIa-48L/R/H phenotype. Blood. 1997;90(3):1109–14.

    CAS  PubMed  Google Scholar 

  14. Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood. 2002;99(3):754–8.

    Article  CAS  PubMed  Google Scholar 

  15. Weng WK, Levy R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol. 2003;21(21):3940–7.

    Article  CAS  PubMed  Google Scholar 

  16. Musolino A, Naldi N, Bortesi B, Pezzuolo D, Capelletti M, Missale G, et al. Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J Clin Oncol. 2008;26(11):1789–96.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang W, Gordon M, Schultheis AM, Yang DY, Nagashima F, Azuma M, et al. FCGR2A and FCGR3A polymorphisms associated with clinical outcome of epidermal growth factor receptor expressing metastatic colorectal cancer patients treated with single-agent cetuximab. J Clin Oncol. 2007;25(24):3712–8.

    Article  CAS  PubMed  Google Scholar 

  18. Ternant D, Buchler M, Beneton M, Alvan G, Ohresser M, Touchard G, et al. Interindividual variability in the concentration-effect relationship of antilymphocyte globulins: a possible influence of FcgammaRIIIa genetic polymorphism. Br J Clin Pharmacol. 2008;65(1):60–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Ternant D, Ducourau E, Perdriger A, Corondan A, Le Goff B, Devauchelle-Pensec V, et al. Relationship between inflammation and infliximab pharmacokinetics in rheumatoid arthritis. Br J Clin Pharmacol. 2013;2013(19):12313.

    Google Scholar 

  20. Dall’Ozzo S, Tartas S, Paintaud G, Cartron G, Colombat P, Bardos P, et al. Rituximab-dependent cytotoxicity by natural killer cells: influence of FCGR3A polymorphism on the concentration-effect relationship. Cancer Res. 2004;64(13):4664–9.

    Article  PubMed  Google Scholar 

  21. Louis E, El Ghoul Z, Vermeire S, Dall’Ozzo S, Rutgeerts P, Paintaud G, et al. Association between polymorphism in IgG Fc receptor IIIa coding gene and biological response to infliximab in Crohn’s disease. Aliment Pharmacol Ther. 2004;19(5):511–9.

    Article  CAS  PubMed  Google Scholar 

  22. Louis EJ, Watier HE, Schreiber S, Hampe J, Taillard F, Olson A, et al. Polymorphism in IgG Fc receptor gene FCGR3A and response to infliximab in Crohn’s disease: a subanalysis of the ACCENT I study. Pharmacogenet Genomics. 2006;16(12):911–4.

    Article  CAS  PubMed  Google Scholar 

  23. Moroi R, Endo K, Kinouchi Y, Shiga H, Kakuta Y, Kuroha M, et al. FCGR3A-158 polymorphism influences the biological response to infliximab in Crohn’s disease through affecting the ADCC activity. Immunogenetics. 2013;65(4):265–71.

    Article  CAS  PubMed  Google Scholar 

  24. Scallon B, Cai A, Solowski N, Rosenberg A, Song XY, Shealy D, et al. Binding and functional comparisons of two types of tumor necrosis factor antagonists. J Pharmacol Exp Ther. 2002;301(2):418–26.

    Article  CAS  PubMed  Google Scholar 

  25. Scallon BJ, Trinh H, Nedelman M, Brennan FM, Feldmann M, Ghrayeb J. Functional comparisons of different tumour necrosis factor receptor/IgG fusion proteins. Cytokine. 1995;7(8):759–70.

    Article  CAS  PubMed  Google Scholar 

  26. Louis E, Mary JY, Vernier-Massouille G, Grimaud JC, Bouhnik Y, Laharie D, et al. Maintenance of remission among patients with Crohn’s disease on antimetabolite therapy after infliximab therapy is stopped. Gastroenterology. 2012;142(1):63–70.

    Article  CAS  PubMed  Google Scholar 

  27. Dall’Ozzo S, Andres C, Bardos P, Watier H, Thibault G. Rapid single-step FCGR3A genotyping based on SYBR Green I fluorescence in real-time multiplex allele-specific PCR. J Immunol Methods. 2003;277(1–2):185–92.

    Article  PubMed  Google Scholar 

  28. Ternant D, Mulleman D, Degenne D, Willot S, Guillaumin JM, Watier H, et al. An enzyme-linked immunosorbent assay for therapeutic drug monitoring of infliximab. Ther Drug Monit. 2006;28(2):169–74.

    Article  CAS  PubMed  Google Scholar 

  29. Monolix 4.2.2 user’s guide. Orsay: Lixoft SAS (2013). Available from: http://www.lixoft.eu/wp-content/resources/docs/UsersGuide.pdf. Accessed 27 Jul 2013.

  30. Bergstrand M, Karlsson MO. Handling data below the limit of quantification in mixed effect models. AAPS J. 2009;11(2):371–80. doi:10.1208/s12248-009-9112-5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Comets E, Brendel K, Mentre F. Computing normalised prediction distribution errors to evaluate nonlinear mixed-effect models: the npde add-on package for R. Comput Methods Programs Biomed. 2008;90(2):154–66.

    Article  PubMed  Google Scholar 

  32. Gibiansky L, Gibiansky E. Target-mediated drug disposition model: relationships with indirect response models and application to population PK-PD analysis. J Pharmacokinet Pharmacodyn. 2009;36(4):341–51. doi:10.1007/s10928-009-9125-9.

    Article  PubMed  Google Scholar 

  33. Mager DE, Jusko WJ. General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn. 2001;28(6):507–32.

    Article  CAS  PubMed  Google Scholar 

  34. Elliott MJ, Feldmann M, Maini RN. TNF alpha blockade in rheumatoid arthritis: rationale, clinical outcomes and mechanisms of action. Int J Immunopharmacol. 1995;17(2):141–5.

    Article  CAS  PubMed  Google Scholar 

  35. Elliott MJ, Maini RN. Anti-cytokine therapy in rheumatoid arthritis. Baillieres Clin Rheumatol. 1995;9(4):633–52.

    Article  CAS  PubMed  Google Scholar 

  36. Maini RN, Elliott MJ, Brennan FM, Williams RO, Chu CQ, Paleolog E, et al. Monoclonal anti-TNF alpha antibody as a probe of pathogenesis and therapy of rheumatoid disease. Immunol Rev. 1995;144:195–223.

    Article  CAS  PubMed  Google Scholar 

  37. FDA. Infliximab: clinical pharmacology review. Available from: http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/HowDrugsareDevelopedandApproved/ApprovalApplications/TherapeuticBiologicApplications/ucm107704.pdf. Accessed 21 Aug 2014.

  38. Wright HL, Chikura B, Bucknall RC, Moots RJ, Edwards SW. Changes in expression of membrane TNF, NF-κB activation and neutrophil apoptosis during active and resolved inflammation. Ann Rheum Dis. 2011;70(3):537–43.

    Article  CAS  PubMed  Google Scholar 

  39. Horiuchi T, Mitoma H, Harashima S, Tsukamoto H, Shimoda T. Transmembrane TNF-alpha: structure, function and interaction with anti-TNF agents. Rheumatology. 2010;49(7):1215–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Mitoma H, Horiuchi T, Tsukamoto H, Tamimoto Y, Kimoto Y, Uchino A, et al. Mechanisms for cytotoxic effects of anti-tumor necrosis factor agents on transmembrane tumor necrosis factor alpha-expressing cells: comparison among infliximab, etanercept, and adalimumab. Arthritis Rheum. 2008;58(5):1248–57. doi:10.002/art.23447.

    Article  CAS  PubMed  Google Scholar 

  41. Friberg LE, Henningsson A, Maas H, Nguyen L, Karlsson MO. Model of chemotherapy-induced myelosuppression with parameter consistency across drugs. J Clin Oncol. 2002;20(24):4713–21.

    Article  PubMed  Google Scholar 

  42. Quartino AL, Friberg LE, Karlsson MO. A simultaneous analysis of the time-course of leukocytes and neutrophils following docetaxel administration using a semi-mechanistic myelosuppression model. Invest New Drugs. 2012;30(2):833–45.

  43. Quartino AL, Karlsson MO, Lindman H, Friberg LE. Characterization of endogenous G-CSF and the inverse correlation to chemotherapy-induced neutropenia in patients with breast cancer using population modeling. Pharm Res. 2014;31(12):3390–403.

    Article  CAS  PubMed  Google Scholar 

  44. Ducourau E, Mulleman D, Paintaud G, Chu Miow Lin D, Lauféron F, Ternant D, et al. Antibodies toward infliximab are associated with low infliximab concentration at treatment initiation and poor infliximab maintenance in rheumatic diseases. Arthritis Res Ther. 2011;13(3):R105.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was a collaborative venture by GETAID (Groupe d’Étude Thérapeutique des Affections Inflammatoires du Tube Digestif). The following GETAID investigators participated in patient recruitment: Amiens (J.L. Dupas), Bordeaux (D. Laharie), Caen (J.M. Reimund), Clichy-Beaujon (Y. Bouhnik), Colombes – L Mourier (P. Jouet), Gent (M. De Vos), Liège (J. Belaiche, E. Louis), Lille (J.-F. Colombel, G. Vernier-Massouille), Lyon (S. Nancey), Marseille (J.C. Grimaud), Montpellier (M. Veyrac), Nantes (A. Boureille, M. Flamant), Paris – Hôpital Européen Georges Pompidou (R. Jian), Paris – Lariboisière (P. Marteau), Paris – St Louis (M. Lemann, M. Allez), Rouen (G. Savoye), Strasbourg (B. Duclos), and Tours (L. Picon). The authors would like to thank Jean-Yves Mary and Nicolas Azzopardi for statistical advice, Hervé Watier for scientific advice, Céline Desvignes for blood-sample management, Anne-Claire Duveau, Caroline Brochon, Audrey Farnault and Marie-Noëlle Marson for technical assistance with infliximab and ATI assays, and FCGR3A genotyping. The University Hospital of Tours received an FEDER (Fonds Européen de Développement Régional – European funding for regional development) for its CePiBAc (Cetre pilote de suivi biologique des anticorps thérapeutiques – Pilot centre for therapeutic antibodies monitoring). This work was partly supported by the French Higher Education and Research Ministry under the program ‘Investissements d’avenir’ Grant Agreement: LabEx MAbImprove ANR-10-LABX-53-01.

Disclosures

Jean-Frédéric Colombel has served as a consultant, advisory board member, or speaker for Abbvie, Amgen, Bristol Meyers Squibb, Celltrion, Ferring, Genentech, Giuliani SPA, Given Imaging, Janssen, Merck & Co., Millenium Pharmaceuticals Inc., Nutrition Science Partners Ltd, Pfizer Inc., Prometheus Laboratories, Receptos, Sanofi, Schering Plough Corporation, Takeda, Teva Pharmaceuticals, UCB Pharma, Vertex, and Dr. August Wolff GmbH & Co. Matthieu Allez has served as a consultant for Abbott, UCB Pharma, Ferring, Merck Sharp and Dohme Corp., TcLand, TxCell, Novo Nordisk, Pfizer, and GlaxoSmithKline; has received lecture fees from Merck Sharp and Dohme Corp., Ferring, Neovacs, Janssen Cilag, and Abbott; and has received financial support for research from Novo Nordisk. Edouard Louis has received fees for the following: research grant from AstraZeneca, Schering-Plough, and Abbott; speaker fees from Abbott, Abbvie, AstraZeneca, Ferring, Schering-Plough, MSD, Chiesi, Menarini, Nycomed, Falk, UCB; advisory board fees from Abbott, Abbvie, Ferring, UCB, MSD, Millenium, Mitsubishi Pharma, Takeda; and consultant fees from Abbvie. Gilles Paintaud has been a consultant for Laboratoires Français du Fractionnement et des Biotechnologies (LFB) and Pierre-Fabre Laboratories; his research team has received finance from Roche Pharma, Chugai, Pfizer, Novartis and Janssen. David Ternant, Zahir Berkane, Laurence Picon, and Valérie Gouilleux-Gruart declare no conflicts of interest.

Authors’ responsibility

David Ternant, the corresponding author, confirms full access to all data in the study, and final responsibility.

Authors’ contributions

David Ternant, Zahir Berkane, Laurence Picon, Valérie Gouilleux-Gruart, Jean-Frédéric Colombel, Matthieu Allez, Edouard Louis, and Gilles Paintaud wrote the manuscript; Edouard Louis and Gilles Paintaud designed the research; David Ternant, Zahir Berkane, and Gilles Paintaud analyzed the data; and Valérie Gouilleux-Gruart performed the analytical part.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ternant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ternant, D., Berkane, Z., Picon, L. et al. Assessment of the Influence of Inflammation and FCGR3A Genotype on Infliximab Pharmacokinetics and Time to Relapse in Patients with Crohn’s Disease. Clin Pharmacokinet 54, 551–562 (2015). https://doi.org/10.1007/s40262-014-0225-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-014-0225-3

Keywords

Navigation