Skip to main content
Log in

Population Pharmacokinetic-Pharmacodynamic Modelling of 24-h Diastolic Ambulatory Blood Pressure Changes Mediated by Axitinib in Patients with Metastatic Renal Cell Carcinoma

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background

Increased blood pressure (BP) is commonly observed in patients treated with vascular endothelial growth factor pathway inhibitors, including axitinib. Ambulatory BP monitoring (ABPM) and pharmacokinetic data were collected in a randomised, double-blind phase II study of axitinib with or without dose titration in previously untreated patients with metastatic renal cell carcinoma.

Objective

Aims of these analyses were to (1) develop a population pharmacokinetic-pharmacodynamic model for describing the relationship between axitinib exposure and changes in diastolic BP (dBP) and (2) simulate changes in dBP with different axitinib dosing regimens.

Methods

We employed a three-stage modelling approach, which included development of (1) a baseline 24-h ABPM model, (2) a pharmacokinetic model from serial and sparse pharmacokinetic data, and (3) an indirect-response, maximum-effect (E max) model to evaluate the exposure-driven effect of axitinib on dBP. Simulations (N = 1,000) were performed using the final pharmacokinetic-pharmacodynamic model to evaluate dBP changes on days 4 and 15 of treatment with different axitinib doses.

Results

Baseline ABPM data from 62 patients were best described by 24-h mean dBP and two cosine terms. The final indirect-response E max model showed good agreement between observed 24-h ABPM data and population and individual predictions. The maximum increase in dBP was 20.8 %, and the axitinib concentration at which 50 % of the maximal increase in dBP was reached was 12.4 ng/mL.

Conclusion

Our model adequately describes the relationship between axitinib exposure and dBP increases. Results from these analyses may potentially be applied to infer dBP changes in patients administered axitinib at nonstandard doses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hu-Lowe DD, Zou HY, Grazzini ML, et al. Nonclinical antiangiogenesis and antitumor activities of axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptor tyrosine kinases 1, 2, 3. Clin Cancer Res. 2008;14:7272–83.

    Article  CAS  PubMed  Google Scholar 

  2. Pfizer Inc. INLYTA® (axitinib) prescribing information. 2012. http://labeling.pfizer.com/ShowLabeling.aspx?id=759. Accessed 1 May 2014.

  3. Cohen RB, Oudard S. Antiangiogenic therapy for advanced renal cell carcinoma: management of treatment-related toxicities. Invest New Drugs. 2012;30:2066–79.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Bhargava P. VEGF kinase inhibitors: how do they cause hypertension? Am J Physiol Regul Integr Comp Physiol. 2009;297:R1–5.

    Article  CAS  PubMed  Google Scholar 

  5. Jain M, Townsend RR. Chemotherapy agents and hypertension: a focus on angiogenesis blockade. Curr Hypertens Rep. 2007;9:320–8.

    Article  CAS  PubMed  Google Scholar 

  6. Rini BI, Wilding G, Hudes G, et al. Phase II study of axitinib in sorafenib-refractory metastatic renal cell carcinoma. J Clin Oncol. 2009;27:4462–8.

    Article  CAS  PubMed  Google Scholar 

  7. Rini BI, Escudier B, Tomczak P, et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet. 2011;378:1931–9.

    Article  CAS  PubMed  Google Scholar 

  8. Rini BI, Melichar B, Ueda T, et al. Axitinib with or without dose titration for first-line metastatic renal-cell carcinoma: a randomised double-blind phase 2 trial. Lancet Oncol. 2013;14:1233–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Hutson TE, Lesovoy V, Al-Shukri S, et al. Axitinib versus sorafenib as first-line therapy in patients with metastatic renal-cell carcinoma: a randomised open-label phase 3 trial. Lancet Oncol. 2013;14:1287–94.

    Article  CAS  PubMed  Google Scholar 

  10. Rugo HS, Herbst RS, Liu G, et al. Phase I trial of the oral antiangiogenesis agent AG-013736 in patients with advanced solid tumors: pharmacokinetic and clinical results. J Clin Oncol. 2005;23:5474–83.

    Article  CAS  PubMed  Google Scholar 

  11. Rixe O, Bukowski RM, Michaelson MD, et al. Axitinib treatment in patients with cytokine-refractory metastatic renal-cell cancer: a phase II study. Lancet Oncol. 2007;8:975–84.

    Article  PubMed  Google Scholar 

  12. Tomita Y, Uemura H, Fujimoto H, et al. Key predictive factors of axitinib (AG-013736)-induced proteinuria and efficacy: a phase II study in Japanese patients with cytokine-refractory metastatic renal cell carcinoma. Eur J Cancer. 2011;47:2592–602.

    Article  CAS  PubMed  Google Scholar 

  13. Rini BI, Garrett M, Poland B, et al. Axitinib in metastatic renal cell carcinoma: results of a pharmacokinetic and pharmacodynamic analysis. J Clin Pharmacol. 2013;53:491–504.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Bottini PB, Carr AA, Rhoades RB, Prisant LM. Variability of indirect methods used to determine blood pressure: office vs mean 24-hour automated blood pressures. Arch Intern Med. 1992;152:139–44.

    Article  CAS  PubMed  Google Scholar 

  15. Pickering TG, Shimbo D, Haas D. Ambulatory blood-pressure monitoring. N Engl J Med. 2006;354:2368–74.

    Article  CAS  PubMed  Google Scholar 

  16. Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors: European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92:205–16.

    Article  CAS  PubMed  Google Scholar 

  17. Hempel G, Karlsson MO, de Alwis DP, et al. Population pharmacokinetic-pharmacodynamic modeling of moxonidine using 24-hour ambulatory blood pressure measurements. Clin Pharmacol Ther. 1998;64:622–35.

    Article  CAS  PubMed  Google Scholar 

  18. Lankhorst S, Kappers MH, van Esch JH, Danser AH, van den Meiracker AH. Mechanism of hypertension and proteinuria during angiogenesis inhibition: evolving role of endothelin-1. J Hypertens. 2013;31:444–454 (discussion 54).

  19. Maitland ML, Bakris GL, Black HR, et al. Initial assessment, surveillance, and management of blood pressure in patients receiving vascular endothelial growth factor signaling pathway inhibitors. J Natl Cancer Inst. 2010;102:596–604.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Rini BI, Schiller JH, Fruehauf JP, et al. Diastolic blood pressure as a biomarker of axitinib efficacy in solid tumors. Clin Cancer Res. 2011;17:3841–9.

    Article  CAS  PubMed  Google Scholar 

  21. Rini BI, Cohen DP, Lu DR, et al. Hypertension as a biomarker of efficacy in patients with metastatic renal cell carcinoma treated with sunitinib. J Natl Cancer Inst. 2011;103:763–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Motzer RJ, Escudier B, Tomczak P, et al. Axitinib versus sorafenib as second-line treatment for advanced renal cell carcinoma: overall survival analysis and updated results from a randomised phase 3 trial. Lancet Oncol. 2013;14:552–62.

    Article  CAS  PubMed  Google Scholar 

  23. Rixe O, Billemont B, Izzedine H. Hypertension as a predictive factor of sunitinib activity. Ann Oncol. 2007;18:1117.

    Article  CAS  PubMed  Google Scholar 

  24. Bono P, Elfving H, Utriainen T, et al. Hypertension and clinical benefit of bevacizumab in the treatment of advanced renal cell carcinoma. Ann Oncol. 2009;20:393–4.

    Article  CAS  PubMed  Google Scholar 

  25. Ravaud A, Sire M. Arterial hypertension and clinical benefit of sunitinib, sorafenib and bevacizumab in first and second-line treatment of metastatic renal cell cancer. Ann Oncol. 2009;20:966–967 (author reply 7).

  26. Rini BI, Halabi S, Rosenberg JE, et al. Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: final results of CALGB 90206. J Clin Oncol. 2010;28:2137–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Chen Y, Tortorici MA, Garrett M, et al. Clinical pharmacology of axitinib. Clin Pharmacokinet. 2013;52:713–25.

    Article  CAS  PubMed  Google Scholar 

  28. Center for Drug Evaluation and Research. Clinical pharmacology and biopharmaceutics review(s): Inlyta: US Department Health and Human Services Food and Drug Administration. 2011. http://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/202324Orig1s000ClinPharmR.pdf. Accessed 1 May 2014.

  29. Maitland ML, Kasza KE, Karrison T, et al. Ambulatory monitoring detects sorafenib-induced blood pressure elevations on the first day of treatment. Clin Cancer Res. 2009;15:6250–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Keizer RJ, Gupta A, Mac Gillavry MR, et al. A model of hypertension and proteinuria in cancer patients treated with the anti-angiogenic drug E7080. J Pharmacokinet Pharmacodyn. 2010;37:347–363.

  31. Lindauer A, Di Gion P, Kanefendt F, et al. Pharmacokinetic/pharmacodynamic modeling of biomarker response to sunitinib in healthy volunteers. Clin Pharmacol Ther. 2010;87:601–8.

    Article  CAS  PubMed  Google Scholar 

  32. Houk BE, Bello CL, Poland B, et al. Relationship between exposure to sunitinib and efficacy and tolerability endpoints in patients with cancer: results of a pharmacokinetic/pharmacodynamic meta-analysis. Cancer Chemother Pharmacol. 2010;66:357–71.

    Article  CAS  PubMed  Google Scholar 

  33. Hansson EK, Ma G, Amantea MA, et al. PKPD modeling of predictors for adverse effects and overall survival in sunitinib-treated patients with GIST. CPT Pharmacomet Syst Pharmacol. 2013;2:e85.

    Article  CAS  Google Scholar 

  34. Suttle AB, de Souza P, Arumugham T. Bayesian methods for pharmacokinetic/pharmacodynamic modeling of pazopanib-induced increases in blood pressure and transaminases. J Clin Pharmacol. 2013;53:377–84.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was sponsored by Pfizer Inc. The study sponsor was involved in trial design, and the collection and analysis of data. Medical writing support was provided by Joanna Bloom, PhD, and Helen Jones, PhD, of Engage Scientific Solutions, and was funded by Pfizer Inc. We thank Ana Ruiz, PharmD, PhD, of Pfizer Inc. and Jing Wang, PhD, and Vaishnavi Ganti, PhD, for their contribution to the development of the pharmacokinetic-pharmacodynamic analyses.

Conflict of interest disclosures

YC, AHB, GMM and YKP are employees of and own stock in Pfizer Inc. BIR has served as an advisor for and received research funding from Pfizer Inc. The authors have full control of the primary data and agree to allow the journal to review their data if required.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Rini, B.I., Bair, A.H. et al. Population Pharmacokinetic-Pharmacodynamic Modelling of 24-h Diastolic Ambulatory Blood Pressure Changes Mediated by Axitinib in Patients with Metastatic Renal Cell Carcinoma. Clin Pharmacokinet 54, 397–407 (2015). https://doi.org/10.1007/s40262-014-0207-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-014-0207-5

Keywords

Navigation