Skip to main content
Log in

Annulus Tension on the Tricuspid Valve: An In-Vitro Study

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Annulus tension (AT) is defined as leaflet tension per unit length of the annulus circumference. AT was investigated to understand tricuspid valve (TV) annulus mechanics. Ten porcine TVs were mounted on a right ventricle rig with an annulus plate to simulate TV closure. The TVs were mounted on the annulus plate in a normal and dilated TV annulus sizes, and closed under transvalvular pressure of 40 mmHg with the annulus held peripherally by wires. Anterior papillary muscle (PM) and septal PM were displaced in the dilated annulus. Wire forces were measured, and ATs (N/m) were calculated. Clover repair was performed in the dilated TV state subsequently, and AT was calculated again. A one-way ANOVA and Tukey’s HSD test were used to test significances between the different TV states along each annulus segment with p < 0.05. Average ATs for the normal annulus, dilated annulus, and clover repair were 10.75 ± 1.87, 28.81 ± 10.51, and 26.93 ± 11.44 N/m, respectively. Septal annulus segments had the highest ATs when compared to the other segments. For the clover repair, there were no significant changes in AT values. ATs and leaflet forces increased roughly 3–4 times with annulus dilation. AT decelerates annulus dilation as previously shown in the mitral valve. Clover repair does not prevent further annulus dilation by AT change and should be accompanied by annuloplasty. AT improves annulus contraction during a cardiac cycle and should be considered when designing annuloplasty in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Bhattacharya, S., and Z. He. Role of annulus tension in annular dilatation. J. Heart Valve Dis. 18(5):481–487, 2009.

    Google Scholar 

  2. Bhattacharya, S., and Z. He. Annulus tension of the prolapsed mitral valve corrected by edge-to-edge repair. J. Biomech. 45(3):562–568, 2012. doi:10.1016/j.jbiomech.2011.11.005.

    Article  Google Scholar 

  3. Bhattacharya, S., T. Pham, Z. He, and W. Sun. Tension to passively cinch the mitral annulus through coronary sinus access: an ex vivo study in ovine model. J. Biomech. 47(6):1382–1388, 2014. doi:10.1016/j.jbiomech.2014.01.044.

    Article  Google Scholar 

  4. Castedo, E., A. Canas, R. A. Cabo, R. Burgos, and J. Ugarte. Edge-to-edge tricuspid repair for redeveloped valve incompetence after DeVega’s annuloplasty. Ann. Thorac. Surg. 75(2):605–606, 2003.

    Article  Google Scholar 

  5. De Bonis, M., E. Lapenna, G. La Canna, A. Grimaldi, F. Maisano, L. Torracca, et al. A novel technique for correction of severe tricuspid valve regurgitation due to complex lesions. Eur. J. Cardio Thorac. Surg. 25(5):760–765, 2004. doi:10.1016/j.ejcts.2004.01.051.

    Article  Google Scholar 

  6. Fawzy, H., K. Fukamachi, C. D. Mazer, A. Harrington, D. Latter, D. Bonneau, et al. Complete mapping of the tricuspid valve apparatus using three-dimensional sonomicrometry. J. Thorac. Cardiovasc. Surg. 141(4):1037–1043, 2011. doi:10.1016/j.jtcvs.2010.05.039.

    Article  Google Scholar 

  7. Fukuda, S., G. Saracino, Y. Matsumura, M. Daimon, H. Tran, N. L. Greenberg, et al. Three-dimensional geometry of the tricuspid annulus in healthy subjects and in patients with functional tricuspid regurgitation: a real-time, 3-dimensional echocardiographic study. Circulation 114(1 Suppl):I492–I498, 2006. doi:10.1161/CIRCULATIONAHA.105.000257.

    Google Scholar 

  8. He, Z., and S. Bhattacharya. Papillary muscle and annulus size effect on anterior and posterior annulus tension of the mitral valve: an insight into annulus dilatation. J. Biomech. 41(11):2524–2532, 2008. doi:10.1016/j.jbiomech.2008.05.006.

    Article  Google Scholar 

  9. He, Z., and S. Bhattacharya. Mitral valve annulus tension and the mechanism of annular dilation: an in vitro study. J. Heart Valve Dis. 19(6):701–707, 2010.

    Google Scholar 

  10. Hiro, M. E., J. Jouan, M. R. Pagel, E. Lansac, K. H. Lim, H. S. Lim, et al. Sonometric study of the normal tricuspid valve annulus in sheep. J. Heart Valve Dis. 13(3):452–460, 2004.

    Google Scholar 

  11. Hung, J. The pathogenesis of functional tricuspid regurgitation. Semin. Thorac. Cardiovasc. Surg. 22(1):76–78, 2010. doi:10.1053/j.semtcvs.2010.05.004.

    Article  Google Scholar 

  12. Kotoulas, C., R. P. Jones, W. Turkie, and R. Hasan. Edge-to-edge repair of tricuspid valve in a corrected transposition of the great vessels. Hellenic J. Cardiol. 49(6):434–436, 2008.

    Google Scholar 

  13. Kragsnaes, E. S., J. L. Honge, J. B. Askov, J. M. Hasenkam, H. Nygaard, S. L. Nielsen, et al. In-plane tricuspid valve force measurements: development of a strain gauge instrumented annuloplasty ring. Cardiovasc. Eng. Technol. 4(2):131–138, 2013. doi:10.1007/s13239-013-0135-9.

    Article  Google Scholar 

  14. Lapenna, E., M. De Bonis, A. Verzini, G. La Canna, D. Ferrara, M. C. Calabrese, et al. The clover technique for the treatment of complex tricuspid valve insufficiency: midterm clinical and echocardiographic results in 66 patients. Eur. J. Cardio Thorac. Surg. 37(6):1297–1303, 2010. doi:10.1016/j.ejcts.2009.12.020.

    Article  Google Scholar 

  15. Mahmood, F., H. Kim, B. Chaudary, R. Bergman, R. Matyal, J. Gerstle, et al. Tricuspid annular geometry: a three-dimensional transesophageal echocardiographic study. J. Cardiothorac. Vasc. Anesth. 27(4):639–646, 2013. doi:10.1053/j.jvca.2012.12.014.

    Article  Google Scholar 

  16. Ring, L., B. S. Rana, A. Kydd, J. Boyd, K. Parker, and R. A. Rusk. Dynamics of the tricuspid valve annulus in normal and dilated right hearts: a three-dimensional transoesophageal echocardiography study. Eur. Heart J. Cardiovasc. Imaging 13(9):756–762, 2012. doi:10.1093/ehjci/jes040.

    Article  Google Scholar 

  17. Rogers, J. H., and S. F. Bolling. The tricuspid valve: current perspective and evolving management of tricuspidregurgitation. Circulation 119(20):2718–2725, 2009. doi:10.1161/CIRCULATIONAHA.108.842773.

    Article  Google Scholar 

  18. Siefert, A. W., J. H. Jimenez, K. J. Koomalsingh, F. Aguel, D. S. West, T. Shuto, et al. Contractile mitral annular forces are reduced with ischemic mitral regurgitation. J. Thorac. Cardiovasc. Surg. 146(2):422–428, 2013. doi:10.1016/j.jtcvs.2012.10.006.

    Article  Google Scholar 

  19. Siefert, A. W., J. H. Jimenez, D. S. West, K. J. Koomalsingh, R. C. Gorman, J. H. Gorman, 3rd, et al. In-vivo transducer to measure dynamic mitral annular forces. J. Biomech. 45(8):1514–1516, 2012. doi:10.1016/j.jbiomech.2012.03.009.

    Article  Google Scholar 

  20. Siefert, A. W., E. L. Pierce, M. Lee, M. O. Jensen, C. Aoki, S. Takebayashi, et al. Suture forces in undersized mitral annuloplasty: novel device and measurements. Ann. Thorac. Surg. 98(1):305–309, 2014. doi:10.1016/j.athoracsur.2014.02.036.

    Article  Google Scholar 

  21. Silver, M. D., J. H. Lam, N. Ranganathan, and E. D. Wigle. Morphology of the human tricuspid valve. Circulation 43(3):333–348, 1971.

    Article  Google Scholar 

  22. Simonneau, G., N. Galie, L. J. Rubin, D. Langleben, W. Seeger, G. Domenighetti, et al. Clinical classification of pulmonary hypertension. J. Am. Coll. Cardiol. 43(12 Suppl S):5S–12S, 2004. doi:10.1016/j.jacc.2004.02.037.

    Article  Google Scholar 

  23. Simonneau, G., M. A. Gatzoulis, I. Adatia, D. Celermajer, C. Denton, A. Ghofrani, et al. Updated clinical classification of pulmonary hypertension. J. Am. Coll. Cardiol. 62(25 Suppl):D34–D41, 2013. doi:10.1016/j.jacc.2013.10.029.

    Article  Google Scholar 

  24. Spinner, E. M., D. Buice, C. H. Yap, and A. P. Yoganathan. The effects of a three-dimensional, saddle-shaped annulus on anterior and posterior leaflet stretch and regurgitation of the tricuspid valve. Ann. Biomed. Eng. 40(5):996–1005, 2012. doi:10.1007/s10439-011-0471-6.

    Article  Google Scholar 

  25. Spinner, E. M., S. Lerakis, J. Higginson, M. Pernetz, S. Howell, E. Veledar, et al. Correlates of tricuspid regurgitation as determined by 3D echocardiography: pulmonary arterial pressure, ventricle geometry, annular dilatation, and papillary muscle displacement. Circ. Cardiovasc. Imaging. 5(1):43–50, 2012. doi:10.1161/CIRCIMAGING.111.965707.

    Article  Google Scholar 

  26. Spinner, E. M., P. Shannon, D. Buice, J. H. Jimenez, E. Veledar, P. J. Del Nido, et al. In vitro characterization of the mechanisms responsible for functional tricuspid regurgitation. Circulation 124(8):920–929, 2011. doi:10.1161/CIRCULATIONAHA.110.003897.

    Article  Google Scholar 

  27. Spinner, E. M., K. Sundareswaran, L. P. Dasi, V. H. Thourani, J. Oshinski, and A. P. Yoganathan. Altered right ventricular papillary muscle position and orientation in patients with a dilated left ventricle. J. Thorac. Cardiovasc. Surg. 141(3):744–749, 2011. doi:10.1016/j.jtcvs.2010.05.034.

    Article  Google Scholar 

  28. Ton-Nu, T. T., R. A. Levine, M. D. Handschumacher, D. J. Dorer, C. Yosefy, D. Fan, et al. Geometric determinants of functional tricuspid regurgitation: insights from 3-dimensional echocardiography. Circulation 114(2):143–149, 2006. doi:10.1161/CIRCULATIONAHA.106.611889.

    Article  Google Scholar 

  29. Vakil, K., H. Roukoz, M. Sarraf, B. Krishnan, M. Reisman, W. C. Levy, et al. Safety and efficacy of the MitraClip(R) system for severe mitral regurgitation: a systematic review. Catheter. Cardiovasc. Interv. 84(1):129–136, 2014. doi:10.1002/ccd.25347.

    Article  Google Scholar 

  30. Wan, B., M. Rahnavardi, D. H. Tian, K. Phan, S. Munkholm-Larsen, P. G. Bannon, et al. A meta-analysis of MitraClip system versus surgery for treatment of severe mitral regurgitation. Ann. Cardiothorac. Surg. 2(6):683–692, 2013. doi:10.3978/j.issn.2225-319X.2013.11.02.

    Google Scholar 

Download references

Acknowledgements

The pig hearts were donated by the Klemke Sausage Haus in Slaton, Texas, USA. The authors would like to thank the ARCS Foundation for their generous support. The authors would also like to thank Philip Henry for providing assistance with construction of the normal and dilated annulus plates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoming He.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basu, A., He, Z. Annulus Tension on the Tricuspid Valve: An In-Vitro Study. Cardiovasc Eng Tech 7, 270–279 (2016). https://doi.org/10.1007/s13239-016-0267-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-016-0267-9

Keywords

Navigation