Skip to main content
Log in

Mitral Valve Regurgitation in the LVAD-Assisted Heart Studied in a Mock Circulatory Loop

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Permanent closure of the aortic valve (AVC) is sometimes performed In LVAD patients, usually when a mechanical valve prosthesis or significant aortic insufficiency is present. Mitral valve regurgitation (MVR) present at the time of LVAD implantation can remain unresolved, representing a limitation for exercise tolerance and a potential predictor of mortality. To investigate the effect of MVR on hemodynamics of the LVAD-supported heart following AVC, studies were performed using a mock circulatory loop. Pressure and flow measured for a range of cardiac function, LVAD speed, and MVR show that cardiac contraction augments aortic pressure by 10–27% over nonpulsatile conditions when the mitral valve functions normally, but decreases with MVR until it reaches the nonpulsatile level. Aortic flow displays a similar trend, demonstrating a 25% decrease from fully functioning to open at 7 krpm, a 5% decrease at 9 krpm, and no observable effect at 11 krpm. Pulsatility decreases with increased LVAD speed and MVR. The data indicate that a modest level of cardiac output (1.5–2 L/min) can be maintained by the native heart through the LVAD when the LVAD is off. These results demonstrate that MVR decreases the augmentation of forward flow by improved cardiac function at lower LVAD speeds. While some level of MVR can be tolerated in LVAD recipients, this condition represents a risk, particularly in those patients that undergo AVC closure, and may warrant repair at the time of surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Aggarwal, A., P. Sharma, R. Raghuvir, A. Tatooles, P. Pappas, and G. Bhat. Incidence and prognostic significance of mitral regurgitation in continuous flow left ventricular assist devices, in ASAIO Annual Meeting, 2013.

  2. Adamson, R. M., W. P. Dembitsky, S. Baradarian, J. Chammas, K. May-Newman, S. Chillcott, M. Stahovich, V. McCalmont, K. Ortiz, P. Hoagland, and B. Jaski. Aortic valve closure associated with HeartMate left ventricular device support: technical considerations and long-term results. J. Heart Lung Transplant. 30(5):576–582, 2011.

    Article  Google Scholar 

  3. Apostolakis, E. E., and N. G. Baikoussis. Methods of estimation of mitral valve regurgitation for the cardiac surgeon. J Cardiothorac Surg 4:34, 2009.

    Article  Google Scholar 

  4. Bonow, R. O., B. A. Carabello, K. Chatterjee, A. C. de Leon, D. P. Faxon, M. D. Freed, W. H. Gaasch, B. W. Lytle, R. A. Nishimura, P. T. O’Gara, R. A. O’Rourke, C. M. Otto, P. M. Shah, and J. S. Shanewise. 2008 Focused Update Incorporated Into the ACC/AHA 2006 Guidelines for the Management of Patients With Valvular Heart Disease: a Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease): Endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation 118(15):e523–e661, 2008.

    Article  Google Scholar 

  5. Cohn, W. E., Z. T. Demirozu, and O. H. Frazier. Surgical closure of left ventricular outflow tract after left ventricular assist device implantation in patients with aortic valve pathology. J. Heart Lung Transplant. 30(1):59–63, 2011.

    Article  Google Scholar 

  6. Cohn, W. E., and O. H. Frazier. The sandwich plug technique: simple, effective, and rapid closure of a mechanical aortic valve prosthesis at left ventricular assist device implantation. J. Thorac. Cardiovasc. Surg. 142(2):455–457, 2011.

    Article  Google Scholar 

  7. Drakos, S. G., L. Janicki, B. D. Horne, A. G. Kfoury, B. B. Reid, S. Clayson, K. Horton, F. Haddad, D. Y. Li, D. G. Renlund, and P. W. Fisher. Risk factors predictive of right ventricular failure after left ventricular assist device implantation. Am. J. Cardiol. 105(7):1030–1035, 2010.

    Article  Google Scholar 

  8. Giridharan, G. A., S. C. Koenig, K. G. Soucy, Y. Choi, T. Pirbodaghi, C. R. Bartoli, G. Monreal, M. A. Sobieski, E. Schumer, A. Cheng, and M. S. Slaughter. Hemodynamic changes and retrograde flow in LVAD failure. ASAIO J. 61(3):282–291, 2015.

    Article  Google Scholar 

  9. Hakki, A. H., A. S. Iskandrian, C. E. Bemis, D. Kimbiris, G. S. Mintz, B. L. Segal, and C. Brice. A simplified valve formula for the calculation of stenotic cardiac valve areas. Circulation 63(5):1050–1055, 1981.

    Article  Google Scholar 

  10. Hall, J. E. Guyton and Hall Textbook of Medical Physiology (13th ed.). Philadelphia: Saunders, 2015.

    Google Scholar 

  11. Jahanmir, S., A. Z. Hunsberger, H. Heshmat, M. J. Tomaszewski, J. F. Walton, W. J. Weiss, B. Lukic, W. E. Pae, C. M. Zapanta, and T. Z. Khalapyan. Performance characterization of a rotary centrifugal left ventricular assist device with magnetic suspension. Artif. Organs 32(5):366–375, 2008.

    Article  Google Scholar 

  12. Jelenc, M., B. Jelenc, B. Vrtovec, and I. Kneževič. Mitral Regurgitation and Axial Flow Left Ventricular Assist Device. ASAIO J. 59(4):405–409, 2013.

    Article  Google Scholar 

  13. May-Newman, K., L. Enriquez-Almaguer, P. Posuwattanakul, and W. Dembitsky. Biomechanics of the aortic valve in the continuous flow VAD-assisted heart. ASAIO J. 56(4):301–308, 2010.

    Google Scholar 

  14. Morgan, J. A., and R. J. Brewer. Modified central closure technique for treatment of aortic insufficiency in patients on left ventricular assist device support. ASAIO J. 58(6):626–628, 2012.

    Article  Google Scholar 

  15. Pantalos, G. M., S. C. Koenig, K. J. Gillars, G. A. Giridharan, and D. L. Ewert. Characterization of an adult mock circulation for testing cardiac support devices. ASAIO J. 50(1):37–46, 2004.

    Article  Google Scholar 

  16. Parikh, K. S., A. K. Mehrotra, M. J. Russo, R. M. Lang, A. Anderson, V. Jeevanandam, B. H. Freed, J. D. Paul, J. Karol, S. Nathan, and A. P. Shah. Percutaneous transcatheter aortic valve closure successfully treats left ventricular assist device-associated aortic insufficiency and improves cardiac hemodynamics. JACC Cardiovasc. Interv. 6(1):84–89, 2013.

    Article  Google Scholar 

  17. Taghavi, S., E. Hamad, L. Wilson, R. Clark, S. N. Jayarajan, N. Uriel, D. J. Goldstein, H. Takayama, Y. Naka, and A. A. Mangi. Mitral valve repair at the time of continuous-flow left ventricular assist device implantation confers meaningful decrement in pulmonary vascular resistance. ASAIO J. 59(5):469–473, 2013.

    Article  Google Scholar 

  18. Tasset, M. R., M. N. Kavarana, L. A. Gray, and R. D. Dowling. Simple mechanical aortic valve closure in ventricular assist device recipients. Ann. Thorac. Surg. 82(1):316–318, 2006.

    Article  Google Scholar 

  19. Travis, A. R., G. A. Giridharan, G. M. Pantalos, R. D. Dowling, S. D. Prabhu, M. S. Slaughter, M. Sobieski, A. Undar, D. J. Farrar, and S. C. Koenig. Vascular pulsatility in patients with a pulsatile- or continuous-flow ventricular assist device. J. Thorac. Cardiovasc. Surg. 133(2):517–524, 2007.

    Article  Google Scholar 

  20. Wong, K., G. Samaroo, I. Ling, W. Dembitsky, R. Adamson, J. C. del Alamo, and K. May-Newman. Intraventricular flow patterns and stasis in the LVAD-assisted heart. J. Biomech. 47(6):1485–1494, 2014.

    Article  Google Scholar 

  21. Zamarripa Garcia, M. A., L. A. Enriquez, W. Dembitsky, and K. May-Newman. The effect of aortic valve incompetence on the hemodynamics of a continuous flow ventricular assist device in a mock circulation. ASAIO J. 54(3):237–244, 2008.

    Article  Google Scholar 

  22. Zoghbi, W., M. Enriquez-Sarano, E. Foster, P. A. Grayburn, C. D. Kraft, R. A. Levine, P. Nihoyannopoulos, C. M. Otto, M. A. Quinones, H. Rakowski, W. J. Stewart, A. Waggoner, and N. J. Weissman. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and doppler echocardiography. J. Am. Soc. Echocardiogr. 16:777–802, 2003.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Fernando Olea, Phanthiwa Posuwattanakul, and Annamarie Mendoza for their assistance with the experimental studies, and Varsha Ramesh for preparation of the manuscript. Many thanks to Thoratec, Inc. (Pleasanton,CA) for providing a HeartMate II LVAD for these studies, as well as to Medtronic, who provided bioprosthetic heart valves (Medtronic Mosaic porcine aortic valves).

Authors’ Contributions

BF and MH carried out the cardiac simulator studies and analyzed the experimental data. KMN designed the study, and participated in conducting experiments, analyzing the data, and wrote the manuscript. WD and RA conceived of the study and participated in the design as well as assisting with interpretation of the results. All authors read and approved the final manuscript.

Conflict of interest

K. May-Newman is a consultant for Thoratec, Inc, but was not at the time that the study was performed. W. Dembitsky and R. Adamson are both consultants for Thoratec, Inc. Funding for these studies was provided by internal sources at SDSU and the Sharp Memorial Hospital Foundation. No human or animal subjects were used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. May-Newman.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

May-Newman, K., Fisher, B., Hara, M. et al. Mitral Valve Regurgitation in the LVAD-Assisted Heart Studied in a Mock Circulatory Loop. Cardiovasc Eng Tech 7, 139–147 (2016). https://doi.org/10.1007/s13239-016-0261-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-016-0261-2

Keywords

Navigation