Skip to main content
Log in

Continuous and Pulsatile Pediatric Ventricular Assist Device Hemodynamics with a Viscoelastic Blood Model

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

An Erratum to this article was published on 06 July 2016

Abstract

To investigate the effects of pulsatile and continuous pediatric ventricular assist (PVAD) flow and pediatric blood viscoelasticity on hemodynamics in a pediatric aortic graft model. Hemodynamic parameters of pulsatility, along with velocity and wall shear stress (WSS), are analyzed and compared between Newtonian and viscoelastic blood models at a range of physiological pediatric hematocrits using computational fluid dynamics. Both pulsatile and continuous PVAD flow lead to a decrease in pulsatility (surplus hemodynamic energy, ergs/cm3) compared to healthy aortic flow but with continuous PVAD pulsatility up to 2.4 times lower than pulsatile PVAD pulsatility at each aortic outlet. Significant differences are also seen between the two flow modes in velocity and WSS. The higher velocity jet during systole with pulsatile flow leads to higher WSSs at the anastomotic toe and at the aortic branch bifurcations. The lower velocity but continuous flow jet leads to a much different flow field and higher WSSs into diastole. Under a range of physiological pediatric hematocrit (20–60%), both velocity and WSS can vary significantly with the higher hematocrit blood model generally leading to higher peak WSSs but also lower WSSs in regions of flow separation. The large decrease in pulsatility seen from continuous PVAD flow could lead to complications in pediatric vascular development while the high WSSs during peak systole from pulsatile PVAD flow could lead to blood damage. Both flow modes lead to similar regions prone to intimal hyperplasia resulting from low time-averaged WSS and high oscillatory shear index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Almond, C., D. Morales, E. Blackstone, M. Turrentine, M. Imamura, M. Massicotte, L. Jordan, et al. Berlin heart excor pediatric ventricular assist device for bridge to heart transplantation in us children. Circulation 127(16):1702–1711, 2013.

    Article  Google Scholar 

  2. Baldwin, J., H. Borovetz, and B. Duncan. The national heart, lung, and blood institute pediatric circulatory support program. Circulation 113(1):147–155, 2006.

    Article  Google Scholar 

  3. Bingyang, J., and A. Undar. An evaluation of the benefits of pulsatile versus nonpulsatile perfusion during cardiopulmonary bypass procedures in pediatric and adult cardiac patients. ASAIO J. 52(4):357–361, 2006.

    Article  Google Scholar 

  4. Bodnár, T., A. Sequeira, and M. Prosi. On the shear-thinning and viscoelastic effects of blood flow under various flow rates. Appl. Math. Model. 217(11):5055–5067, 2011.

    MathSciNet  MATH  Google Scholar 

  5. Chen, J., X. Lu, and W. Wang. Non-Newtonian effects of blood flow on hemodynamics in distal vascular graft anastomoses. J. Biomech. 39(11):1983–1995, 2006.

    Article  Google Scholar 

  6. Chiang, B., C. Ye, X. Gou, Y. Gu, Y. Zhou, J. Hong, and Y. Wang. Effects of pulsatile reperfusion on globally ischemic myocardium. ASAIO J. 39:438–443, 1993.

    Article  Google Scholar 

  7. Connell, J., T. Khalapyan, J. Myers, G. Rosenberg, and W. Weiss. Anastomotic Fit Assessment for the Penn State Pediatric Ventricular Assist Device. ASAIO J. 53:687–691, 2007.

    Article  Google Scholar 

  8. Favero, J., A. Secchi, N. Cardozo, and H. Jasak. Viscoelastic flow analysis using the software OpenFOAM and differential constitutive equations. J Non-Newton Fluid. 165:23–24, 2010.

    Article  MATH  Google Scholar 

  9. Fogel, M., P. Weinberg, J. Rychik, A. Hubbard, M. Jacobs, T. Spray, and J. Haselgrove. Caval contribution to flow in the branch pulmonary arteries of fontan patients with a novel application of magnetic resonance presaturation pulse. Circulation 99(9):1215–1221, 1999.

    Article  Google Scholar 

  10. Fukae, K., R. Tominaga, S. Tokunaga, Y. Kawachi, T. Imaizumi, and H. Yasui. The effects of pulsatile and nonpulsatile systemic perfusion on renal sympathetic nerve activity in anesthetized dogs. J. Thorac. Cardiovasc. Surg. 111:478–484, 1996.

    Article  Google Scholar 

  11. Gaer, J., A. Shaw, R. Wild, R. Swift, C. Munsch, P. Smith, and K. Taylor. Effect of cardiopulmonary bypass on gastrointestinal perfusion and function. Ann. Thorac. Surg. 57:371–375, 1994.

    Article  Google Scholar 

  12. Glor, F., B. Ariff, A. Hughes, L. Crowe, P. Verdonck, D. Barratt, S. McG Thom, D. Firmin, and X. Xu. Image-based carotid flow reconstruction: a comparison between MRI and ultrasound. Physiol. Meas. 25(6):1495, 2004.

    Article  Google Scholar 

  13. Good, B. C., S. Deutsch, K. B. Manning. Hemodynamics in a pediatric ascending aorta using a viscoelastic pediatric blood model. Ann. Biomed. Eng. 2015. doi:10.1007/s10439-015-1370-z.

    Google Scholar 

  14. Huo, Y., X. Guo, and G. Kassab. The flow field along the entire length of mouse aorta and primary branches. Ann. Biomed. Eng. 36(5):685–699, 2008.

    Article  Google Scholar 

  15. Issa, R. Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 62:40–65, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  16. Johnston, B., P. Johnston, S. Corney, and D. Kilpatrick. Non-Newtonian blood flow in human right coronary arteries: steady state simulations. J. Biomech. 37(5):709–720, 2004.

    Article  Google Scholar 

  17. Johnston, B., P. Johnston, S. Corney, and D. Kilpatrick. Non-Newtonian blood flow in human right coronary arteries: transient simulations. J. Biomech. 39(6):1116–1128, 2006.

    Article  Google Scholar 

  18. Jopling, J., E. Henry, S. Wiedmeier, and R. Christensen. Reference ranges for hematocrit and blood hemoglobin concentration during the neonatal period: data from a multihospital health care system. Pediatrics 123(2):333–337, 2009.

    Google Scholar 

  19. Kent, A., Z. Kecskes, B. Shadbolt, and M. Falk. Blood pressure in the first year of life in healthy infants born at term. Pediatr. Nephrol. 22(10):1743–1749, 2007.

    Article  Google Scholar 

  20. Kohler, T., T. Kirkman, L. Kraiss, B. Zierler, and A. Clowes. Increased blood flow inhibits neointimal hyperplasia in endothelialized vascular grafts. Circ. Res. 69:1557–1565, 1991.

    Article  Google Scholar 

  21. Ku, D., D. Giddens, C. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arterioscl. Throm. Vas. 5(3):293–302, 1985.

    Article  Google Scholar 

  22. Leuprecht, A., and K. Perktold. Computer simulation of non-Newtonian effects on blood flow in large arteries. Comput. Methods Biomech. 4(2):149–163, 2001.

    Article  Google Scholar 

  23. Leverett, L., J. Hellums, C. Alfrey, and E. Lynch. Red blood cell damage by shear stress. Biophys. J. 12(3):257, 1972.

    Article  Google Scholar 

  24. Linderkamp, O., H. Versmold, K. Riegel, and K. Betke. Contributions of red cells and plasma to blood viscosity in preterm and full-term infants and adults. Pediatrics 74(1):45–51, 1984.

    Google Scholar 

  25. LoGerfo, F., W. Quist, M. Nowak, H. Crawshaw, and C. Haudenschild. Downstream anastomotic hyperplasia. A mechanism of failure in Dacron arterial grafts. Ann. Surg. 197(4):479, 1983.

    Article  Google Scholar 

  26. Long, J., A. Undar, K. Manning, and S. Deutsch. Viscoelasticity of pediatric blood and its implications for the testing of a pulsatile pediatric blood pump. ASAIO J. 51(5):562–566, 2005.

    Article  Google Scholar 

  27. Loth, F., P. Fischer, and H. Bassiouny. Blood flow in end-to-side anastomoses. Annu. Rev. Fluid Mech. 40:367–393, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  28. Loth, F., S. Jones, C. Zarins, D. Giddens, R. Nassar, S. Glagov, and H. Bassiouny. Relative contribution of wall shear stress and injury in experimental intimal thickening at PTFE end-to-side arterial anastomoses. J. Biomech. Eng. 124(1):44–51, 2002.

    Article  Google Scholar 

  29. Machii, M., and A. Becker. Morphologic features of the normal aortic arch in neonates, infants, and children pertinent to growth. Ann. Thorac. Surg. 64(2):511–515, 1997.

    Article  Google Scholar 

  30. Mah, D., T. Singh, R. Thiagarajan, K. Gauvreau, G. Piercey, E. Blume, F. Fynn-Thompson, and C. Almond. Incidence and risk factors for mortality in infants awaiting heart transplantation in the USA. J. Heart Lung Transpl. 28(12):1292–1298, 2009.

    Article  Google Scholar 

  31. Malek, M., S. Alper, and S. Izumo. Hemodynamic Shear Stress and Its Role in Atherosclerosis. JAMA-J Am Med Assoc. 282(21):2035–2042, 1999.

    Article  Google Scholar 

  32. Matoth, Y., R. Zaizov, and I. Varsano. Postnatal changes in some red cell parameters. Acta Paediatr. 60:317–323, 1971.

    Article  Google Scholar 

  33. Matsumoto, T., C. Wolferth, and M. Perlman. Effects of pulsatile and non-pulsatile perfusion upon cerebral and conjunctival microcirculation in dogs. Am. Surg. 37:61–64, 1971.

    Google Scholar 

  34. May-Newman, K., B. Hillen, and W. Dembitsky. Effect of left ventricular assist device outflow conduit anastomosis location on flow patterns in the native aorta. ASAIO J. 52(2):132–139, 2006.

    Article  Google Scholar 

  35. Mori, A., R. Tabata, Y. Nakamura, K. Watanabe, M. Onoe, and Y. Okada. Effects of pulsatile cardiopulmonary bypass on carbohydrate and lipid metabolism. J. Cardiovasc. Surg. 28:621–626, 1987.

    Google Scholar 

  36. Nagaoka, H., R. Innami, M. Watanabe, M. Satoh, F. Murayama, and N. Funakoshi. Preservation of pancreatic beta cell function with pulsatile cardiopulmonary bypass. Ann. Thorac. Surg. 48:798–802, 1989.

    Article  Google Scholar 

  37. O’Callaghan, S., M. Walsh, and T. McGloughlin. Numerical modelling of Newtonian and non-Newtonian representation of blood in a distal end-to-side vascular bypass graft anastomosis. Med. Eng. Phys. 28(1):70–74, 2006.

    Article  Google Scholar 

  38. Ojha, M. Spatial and temporal variations of wall shear stress within an end-to-side arterial anastomosis model. J. Biomech. 26(12):1377–1388, 1993.

    Article  Google Scholar 

  39. Pantalos, G., G. Giridharan, J. Colyer, M. Mitchel, J. Speakman, C. Lucci, G. Johnson, M. Gartner, and S. Koenig. Effect of continuous and pulsatile left ventricular assist on pulsatility in a pediatric animal model of left ventricular dysfunction: pilot observations. ASAIO J. 53(3):385–391, 2007.

    Article  Google Scholar 

  40. Pekkan, K., O. Dur, K. Sundareswaran, K. Kanter, M. Fogel, A. Yoganathan, and A. Undar. Neonatal aortic arch hemodynamics and perfusion during cardiopulmonary bypass. J. Biomech. Eng. 130(6):061012, 2008.

    Article  Google Scholar 

  41. Pekkan, K., D. Frakes, D. De Zelicourt, C. Lucas, J. Parks, and A. Yoganathan. Coupling pediatric ventricle assist devices to the fontan circulation: simulations with a lumped-parameter model. ASAIO J. 51(5):618–628, 2005.

    Article  Google Scholar 

  42. Rajagopal, K., and A. Srinivasa. A thermodynamic framework for rate-type fluid models. J Non-Newton Fluid. 88(3):207–227, 2000.

    Article  MATH  Google Scholar 

  43. Shahcheraghi, N., H. Dwyer, A. Cheer, I. Barakat, and T. Rutaganira. Unsteady and three-dimensional simulation of blood flow in the human aortic arch. J. Biomech. Eng. 124(4):378–387, 2002.

    Article  Google Scholar 

  44. Shepard, R., D. Simpson, and J. Sharp. Energy Equivalent Pressure. Arch. Surg. 93:730–740, 1966.

    Article  Google Scholar 

  45. Silverman, N., S. Levitsky, J. Kohler, M. Trenkner, and H. Feinberg. Prevention of reperfusion injury following cardioplegic arrest by pulsatile flow. Ann. Thorac. Surg. 35(5):493–499, 1983.

    Article  Google Scholar 

  46. Taylor, K., W. Bain, K. Maxted, M. Hutton, W. McNab, and P. Caves. Comparative studies of pulsatile and nonpulsatile flow during cardiopulmonary bypass. I. Pulsatile system employed and its hematologic effects. J. Thorac. Cardiovasc. Surg. 75:569–573, 1978.

    Google Scholar 

  47. Travis, A., G. Giridharan, G. Pantalos, R. Dowling, S. Prabhu, M. Slaughter, M. Sobieski, A. Ündar, D. Farrar, and S. Koenig. Vascular pulsatility in patients with a pulsatile-or continuous-flow ventricular assist device. J. Thorac. Cardiovasc. Surg. 133(2):517–524, 2007.

    Article  Google Scholar 

  48. Trinkle, J., N. Helton, R. Wood, and L. Bryant. Metabolic comparison of a new pulsatile pump and a roller pump for cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg. 58:562, 1969.

    Google Scholar 

  49. Ündar, A., and C. Fraser, Jr. Defining pulsatile perfusion: quantification in terms of energy equivalent pressure. Artif. Organs 23:712–716, 1999.

    Article  Google Scholar 

  50. Ündar, A., N. Henderson, G. Thurston, T. Masai, E. Beyer, and C. Fraser, Jr. The effects of pulsatile versus nonpulsatile perfusion on blood viscoelasticity before and after deep hypothermic circulatory arrest in a neonatal piglet model. Artif. Organs 23:717–721, 1999.

    Article  Google Scholar 

  51. Ündar, A., T. Masai, E. Beyer, J. Goddard-Finegold, M. McGarry, and C. Fraser, Jr. Pediatric physiologic pulsatile pump enhances cerebral and renal blood flow during and after cardiopulmonary bypass. Artif. Organs 26:919–923, 2002.

    Article  Google Scholar 

  52. Van der Linde, D., E. Konings, M. Slager, M. Witsenburg, W. Helbing, J. Takkenberg, and J. Roos-Hesselink. Birth prevelance of congenital heart disease worldwide: a systematic review and meta-analysis. J. Am. Coll. Cardiol. 58(21):2241–2247, 2011.

    Article  Google Scholar 

  53. Weiss, W., B. Lukic, and A. Ündar. Energy equivalent pressure and total hemodynamic energy associated with the pressure-flow waveforms of a pediatric pulsatile ventricular assist device. ASAIO J. 51(5):614–617, 2005.

    Article  Google Scholar 

  54. Wesolowski, S., L. Sauvage, and R. Pinc. Extracorporeal circulation: the role of the pulse in maintenance of the systemic circulation during heart-lung by-pass. Surgery. 37(4):663–682, 1955.

    Google Scholar 

  55. Yang, N., S. Deutsch, E. Paterson, and K. Manning. Numerical study of blood flow at the end-to-side anastomosis of a left ventricular assist device for adult patients. J. Biomech. Eng. 131(11):111005, 2009.

    Article  Google Scholar 

  56. Yang, N., S. Deutsch, E. Paterson, and K. Manning. Hemodynamics of an end-to-side anastomotic graft for a pulsatile pediatric ventricular assist device. J. Biomech. Eng. 132(3):031009, 2010.

    Article  Google Scholar 

  57. Yang, N., S. Deutsch, E. Paterson, and K. Manning. Comparative study of continuous and pulsatile left ventricular assist devices on hemodynamics of a pediatric end-to-side anastomotic graft. Cardiovasc. Eng. Technol. 1(1):88–103, 2010.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the National Institutes of Health for their support of this project through NIH NHLBI HL108123. Bryan C Good, Steven Deutsch, and Keefe B. Manning declare that they have no conflict of interest. No human or animal studies were carried out by the authors for this article. We also thank Ajit Yoganathan, PhD and Christopher M. Haggerty, PhD from the Department of Biomedical Engineering at the Georgia Institute of Technology for providing the pediatric aortic model.

Disclosures

The authors have no disclosures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keefe B. Manning.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Good, B.C., Deutsch, S. & Manning, K.B. Continuous and Pulsatile Pediatric Ventricular Assist Device Hemodynamics with a Viscoelastic Blood Model. Cardiovasc Eng Tech 7, 23–43 (2016). https://doi.org/10.1007/s13239-015-0252-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-015-0252-8

Keywords

Navigation