Skip to main content

Advertisement

Log in

Experimental and Numerical Analysis of the Bulk Flow Parameters Within an Arteriovenous Fistula

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

The creation of an arteriovenous fistula for hemodialysis has been reported to generate unstable to turbulent flow behaviour. On the other hand, the vast majority of computational fluid dynamic studies of an arteriovenous fistula use low spatial and temporal resolutions resolution in conjunction with laminar assumptions to investigate bulk flow and near wall parameters. The objective of the present study is to investigate if adequately resolved CFD can capture instabilities within an arteriovenous fistula. An experimental model of a representative fistula was created and the pressure distribution within the model was analysed for steady inlet conditions. Temporal CFD simulations with steady inflow conditions were computed for comparison. Following this verification a pulsatile simulation was employed to assess the role of pulsatility on bulk flow parameters. High frequency fluctuations beyond 100 Hz were found to occupy the venous segment of the arteriovenous fistula under pulsatile conditions and the flow within the venous segment exhibited unstable behaviour under both steady and pulsatile inlet conditions. The presence of high frequency fluctuations may be overlooked unless adequate spatial and temporal resolutions are employed. These fluctuations may impact endothelial cell function and contribute to the cascade of events leading to aggressive intimal hyperplasia and the loss of functionality of the vascular access.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Asif, A., P. Roy-Chaudhury, and G. A. Beathard. Early arteriovenous fistula failure: a logical proposal for when and how to intervene. Clin. J. Am. Soc. Nephrol. 1:332–339, 2006.

    Article  Google Scholar 

  2. Bharat, A., M. Jaenicke, and S. Shenoy. A novel technique of vascular anastomosis to prevent juxta-anastomotic stenosis following arteriovenous fistula creation. J. Vasc. Surg. 55:274–280, 2012.

    Article  Google Scholar 

  3. Botti, L., K. Canneyt, R. Kaminsky, T. Claessens, R. N. Planken, P. Verdonck, A. Remuzzi, and L. Antiga. Numerical evaluation and experimental validation of pressure drops across a patient-specific model of vascular access for hemodialysis. Cardiovasc. Eng. Technol. 4:485–499, 2013.

    Article  Google Scholar 

  4. Browne, L. D., P. Griffin, K. Bashar, S. R. Walsh, E. G. Kavanagh, and M. T. Walsh. In vivo validation of the in silico predicted pressure drop across an arteriovenous fistula. Ann. Biomed. Eng. 43:1275–1286, 2015.

    Article  Google Scholar 

  5. Carroll, G. T., T. M. McGloughlin, P. E. Burke, M. Egan, F. Wallis, and M. T. Walsh. Wall shear stresses remain elevated in mature arteriovenous fistulas: a case study. J. Biomech. Eng. 133:021003, 2011.

    Article  Google Scholar 

  6. Celik, I. B., U. Ghia, P. J. Roache, and C. J. Freitas. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications., J. Fluids 130(7) 2008.

  7. Cheng, N. S. Formula for the viscosity of a glycerol-water mixture. Ind. Eng. Chem. Res. 47:3285–3288, 2008. doi:10.1021/ie071349z.

    Article  Google Scholar 

  8. Ene-Iordache, B., and A. Remuzzi. Disturbed flow in radial-cephalic arteriovenous fistulae for haemodialysis: low and oscillating shear stress locates the sites of stenosis. Nephrol. Dial. Transplant. 27:358–368, 2012.

    Article  Google Scholar 

  9. Fillinger, M. F., E. R. Reinitz, R. A. Schwartz, D. E. Resetarits, A. M. Paskanik, D. Bruch, and C. E. Bredenberg. Graft geometry and venous intimal-medial hyperplasia in arteriovenous loop grafts. J. Vasc. Surg. 11:556–566, 1990.

    Article  Google Scholar 

  10. Lee, S., P. Fischer, F. Loth, T. Royston, J. Grogan, and H. Bassiouny. Flow-induced vein-wall vibration in an arteriovenous graft. J. Fluids Struct. 20:837–852, 2005.

    Article  Google Scholar 

  11. Lee, S.-W., D. S. Smith, F. Loth, P. F. Fischer, and H. S. Bassiouny. Importance of flow division on transition to turbulence within an arteriovenous graft. J. Biomech. 40:981–992, 2007.

    Article  Google Scholar 

  12. Loth, F., P. F. Fischer, N. Arslan, C. D. Bertram, S. E. Lee, T. J. Royston, W. E. Shaalan, and H. S. Bassiouny. Transitional flow at the venous anastomosis of an arteriovenous graft: potential activation of the ERK1/2 mechanotransduction pathway. J. Biomech. Eng. 125:49–61, 2003.

    Article  Google Scholar 

  13. McGah, P. M., D. F. Leotta, K. W. Beach, J. J. Riley, and A. Aliseda. A longitudinal study of remodeling in a revised peripheral artery bypass graft using 3D ultrasound imaging and computational hemodynamics. J. Biomech. Eng. 133:041008, 2011.

    Article  Google Scholar 

  14. Pustjens, L. W. J. Three-dimensional modeling to derive the pressure drop-flow relation at an AertioVenous Fistula. M.S. Thesis, Eindhoven University of Technology, 2013.

  15. Rajabi-Jagahrgh, E., M. K. Krishnamoorthy, Y. Wang, A. Choe, P. Roy-Chaudhury, and R. K. Banerjee. Influence of temporal variation in wall shear stress on intima-media thickening in arteriovenous fistulae. Semin. Dial. 26:511–519, 2013.

    Article  Google Scholar 

  16. Sigovan, M., V. Rayz, W. Gasper, H. F. Alley, C. D. Owens, and D. Saloner. Vascular remodeling in autogenous arterio-venous fistulas by MRI and CFD. Ann. Biomed. Eng. 41:657–668, 2013.

    Article  Google Scholar 

  17. Sivanesan, S. Flow patterns in the radiocephalic arteriovenous fistula: an in vitro study. J. Biomech. 32:915–925, 1999.

    Article  Google Scholar 

  18. Van Canneyt, K., T. Pourchez, S. Eloot, C. Guillame, A. Bonnet, P. Segers, and P. Verdonck. Hemodynamic impact of anastomosis size and angle in side-to-end arteriovenous fistulae: a computer analysis. J. Vasc. Access 11:52–58, 2010.

    Google Scholar 

Download references

Conflict of Interest

All authors declare that they have no conflict of interest.

Statement on Human and Animal Studies

No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Griffin.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 421 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Browne, L.D., Walsh, M.T. & Griffin, P. Experimental and Numerical Analysis of the Bulk Flow Parameters Within an Arteriovenous Fistula. Cardiovasc Eng Tech 6, 450–462 (2015). https://doi.org/10.1007/s13239-015-0246-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-015-0246-6

Keywords

Navigation