Skip to main content
Log in

Particle Image Velocimetry Used to Qualitatively Validate Computational Fluid Dynamic Simulations in an Oxygenator: A Proof of Concept

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Computational fluid dynamics (CFD) is used to simulate blood flow inside the fiber bundles of oxygenators. The results are interpreted in terms of flow distribution, e.g., stagnation and shunt areas. However, experimental measurements that provide such information on the local flow between the fibers are missing. A transparent model of an oxygenator was built to perform particle image velocimetry (PIV), to perform the experimental validation. The similitude theory was used to adjust the size of the PIV model to the minimal resolution of the PIV system used (scale factor 3.3). A standard flow of 80 mL/min was simulated with CFD for the real oxygenator and the equivalent flow of 711 mL/min, according to the similitude theory, was investigated with PIV. CFD predicts the global size of stagnation and shunt areas well, but underestimates the streamline length and changes in velocities due to the meandering flow around the real fibers in the PIV model. Symmetrical CFD simulation cannot consider asymmetries in the flow, due to manufacturing-related asymmetries in the fiber bundle. PIV could be useful for validation of CFD simulations; measurement quality however must be improved for a quantitative validation of CFD results and the investigation of flow effects such as tortuosity and anisotropic flow behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Arens, J., H. Schnöring, F. Reisch, J. F. Vázquez-Jiménez, T. Schmitz-Rode, and U. Steinseifer. Development of a miniaturized heart-lung machine for neonates with congenital heart defect. ASAIO J. 54(5):509–513, 2008.

    Article  Google Scholar 

  2. Arens, J., M. Schoberer, A. Lohr, T. Orlikowsky, M. Seehase, R. K. Jellema, J. J. Collins, B. W. Kramer, T. Schmitz-Rode, and U. Steinseifer. NeonatOx: a pumpless extracorporeal lung support for premature neonates. Artif. Organs 35(11):997–1001, 2011.

    Article  Google Scholar 

  3. Bhavsar, S. S., T. Schmitz-Rode, and U. Steinseifer. Numerical modeling of anisotropic fiber bundle behavior in oxygenators. Artif. Organs 35(11):1095–1102, 2011.

    Article  Google Scholar 

  4. Funakubo, A., I. Taga, J. W. McGillicuddy, Y. Fukui, and R. B. Hirschl. Flow vectorial analysis in an artificial implantable lung. ASAIO J. 49:383–387, 2003.

    Google Scholar 

  5. Graefe, R., R. Borchardt, J. Arens, P. Schlanstein, T. Schmitz-Rode, and U. Steinseifer. Improving oxygenator performance using computational simulation and flow field-based parameters. Artif. Organs 34(11):930–936, 2010.

    Article  Google Scholar 

  6. Hirano, A., K. Yamamoto, M. Matsuda, M. Inoue, S. Nagao, K. Kuwana, M. Kamiya, and K. Sakai. Flow uniformity in oxygenators with different outlet port design. ASAIO J. 55(3):209–212, 2009.

    Article  Google Scholar 

  7. Jones, C. C., M. J. McDonough, P. Capasso, D. Wang, K. S. Rosenstein, and J. B. Zwischenberger. Improved computational fluid dynamic simulations of blood flow in membrane oxygenators from X-ray imaging. Ann. Biomed. Eng. 41:2088–2098, 2013.

    Article  Google Scholar 

  8. Mazaheri, A. R., and G. Ahmadi. Uniformity of the fluid flow velocities within hollow fiber membranes of blood oxygenation devices. Artif. Organs 30(1):10–15, 2006.

    Article  Google Scholar 

  9. Schoberer, M., J. Arens, A. Erben, D. Ophelders, R. K. Jellema, B. W. Kramer, J. L. Bruse, P. Brouwer, T. Schmitz-Rode, U. Steinseifer, and T. Orlikowsky. Miniaturization: the clue to clinical application of the artificial placenta. Artif. Organs 38(3):208–214, 2014.

    Article  Google Scholar 

  10. Schoberer, M., J. Arens, A. Lohr, M. Seehase, R. K. Jellema, J. J. Collins, B. W. Kramer, T. Schmitz-Rode, U. Steinseifer, and T. Orlikowsky. Fifty years of work on the artificial placenta: milestones in the history of extracorporeal support of the premature newborn. Artif. Organs 36(6):512–516, 2012.

    Article  Google Scholar 

  11. Sonntag, S. J., W. Li, M. Becker, W. Kaestner, M. R. Büsen, N. Marx, D. Merhof, and U. Steinseifer. Combined computational and experimental approach to improve the assessment of mitral regurgitation by echocardiography. Ann. Biomed. Eng. 42:971–985, 2014.

    Article  Google Scholar 

  12. Wu, Z. J., B. Gellman, T. Zhang, M. E. Taskin, K. A. Dasse, and B. P. Griffith. Computational fluid dynamics and experimental characterization of the pediatric pump-lung. Cardiovasc. Eng. Technol. 2(4):276–287, 2011.

    Article  Google Scholar 

  13. Wu, Z. J., M. E. Taskin, T. Zhang, K. H. Fraser, and B. P. Griffith. Computational model-based design of a wearable artificial pump-lung for cardiopulmonary/respiratory support. Artif. Organs 36(4):387–399, 2012.

    Article  Google Scholar 

  14. Zhang, J., T. D. C. Nolan, T. Zhang, B. P. Griffith, and Z. J. Wu. Characterization of membrane blood oxygenation devices using computational fluid dynamics. J. Membr. Sci. 288:268–279, 2007.

    Article  Google Scholar 

  15. Zhang, J., M. E. Taskin, A. Koert, T. Zhang, B. Gellman, K. A. Dasse, R. J. Gilbert, B. P. Griffith, and Z. J. Wu. Computational design and in vitro characterization of an integrated maglev pump-oxygenator. Artif. Organs 33:805–817, 2009.

    Article  Google Scholar 

Download references

Acknowledgments

This research project is supported by an I3TM-Grant through the RWTH Aachen University. The authors have no proprietary interests in this paper.

Conflict of interest

All authors declare that they have no conflict of interest.

Statement of Human Studies

No human studies were carried out by the authors for this article.

Statement of Animal Studies

No animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter C. Schlanstein.

Additional information

Associate Editor Hwa Liang Leo oversaw the review of this article.

Peter C. Schlanstein and Felix Hesselmann have contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schlanstein, P.C., Hesselmann, F., Jansen, S.V. et al. Particle Image Velocimetry Used to Qualitatively Validate Computational Fluid Dynamic Simulations in an Oxygenator: A Proof of Concept. Cardiovasc Eng Tech 6, 340–351 (2015). https://doi.org/10.1007/s13239-015-0213-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-015-0213-2

Keywords

Navigation