Skip to main content
Log in

Differential Aortic and Mitral Valve Interstitial Cell Mineralization and the Induction of Mineralization by Lysophosphatidylcholine In Vitro

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Calcific aortic valve disease (CAVD) is a serious condition with vast uncertainty regarding the precise mechanism leading to valve calcification. This study was undertaken to examine the role of the lipid lysophosphatidylcholine (LPC) in a comparison of aortic and mitral valve cellular mineralization. The proportion of LPC in differentially calcified regions of diseased aortic valves was determined using thin layer chromatography (TLC). Next, porcine valvular interstitial cells (pVICs) from the aortic (paVICs) and mitral valve (pmVICs) were cultured with LPC (10−1–105 nM) and analyzed for cellular mineralization, alkaline phosphatase activity (ALPa), proliferation, and apoptosis. TLC showed a higher percentage of LPC in calcified regions of tissue compared to non-calcified regions. In pVIC cultures, with the exception of 105 nM LPC, increasing concentrations of LPC led to an increase in phosphate mineralization. Increased levels of calcium content were exhibited at 104 nm LPC application compared to baseline controls. Compared to pmVIC cultures, paVIC cultures had greater total phosphate mineralization, ALPa, calcium content, and apoptosis, under both a baseline control and LPC-treated conditions. This study showed that LPC has the capacity to promote pVIC calcification. Also, paVICs have a greater propensity for mineralization than pmVICs. LPC may be a key factor in the transition of the aortic valve from a healthy to diseased state. In addition, there are intrinsic differences that exist between VICs from different valves that may play a key role in heart valve pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

ARS:

Alizarin red S

ALPa:

Alkaline phosphatase activity

AS:

Aortic stenosis

βGP:

Beta-glycerophosphate

CAVD:

Calcific aortic valve disease

LPC:

Lysophosphatidylcholine

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

OD:

Optical density

paVIC:

Porcine aortic valve interstitial cell

PKC:

Protein kinase C

pmVIC:

Porcine mitral valve interstitial cell

RFU:

Relative fluorescence units

RLU:

Relative luminescence units

RyR:

Ryanodine receptor

VIC:

Valvular interstitial cell

References

  1. Aiyar, N., J. Disa, Z. Ao, H. Ju, S. Nerurkar, R. N. Willette, C. Macphee, D. Johns, and S. Douglas. Lysophosphatidylcholine induces inflammatory activation of human coronary artery smooth muscle cells. Mol. Cell. Biochem. 295:113–120, 2007.

    Article  Google Scholar 

  2. Berliner, J. A., M. Navab, A. M. Fogelman, J. S. Frank, L. L. Demer, P. A. Edwards, A. Watson, and A. Lusis. Atherosclerosis: basic mechanisms. Circulation 91:2488–2496, 1995.

    Article  Google Scholar 

  3. Caira, F. C., S. R. Stock, T. G. Gleason, E. C. Mcgee, J. Huang, R. O. Bonow, T. C. Spelsberg, P. M. Mccarthy, S. H. Rahimtoola, and N. M. Rajamannan. Human degenerative valve disease is associated with up-regulation of low-density lipoprotein receptor-related protein 5 receptor-mediated bone formation. J. Am. Coll. Cardiol. 47:1707–1712, 2006.

    Article  Google Scholar 

  4. Chai, Y., P. H. Howe, P. E. Dicorleto, and G. M. Chisolm. Oxidized low density lipoprotein and lysophosphatidylcholine stimulate cell cycle entry in vascular smooth muscle cells. J. Biol. Chem. 271:17791–17797, 1996.

    Article  Google Scholar 

  5. Chen, Y., S. Morimoto, S. Kitano, E. Koh, K. Fukuo, B. Jiang, S. Chen, O. Yasuda, A. Hirotani, and T. Ogihara. Lysophosphatidylcholine causes Ca2+ influx, enhanced DNA synthesis and cytotoxicity in cultured vascular smooth muscle cells. Atherosclerosis 112:69–76, 1995.

    Article  Google Scholar 

  6. Combs, M. D., and K. E. Yutzey. Heart valve development: regulatory networks in development and disease. Circ. Res. 105:408–421, 2009.

    Article  Google Scholar 

  7. Coutant, F., L. Perrin-Cocon, S. Agaugué, T. Delair, P. André, and V. Lotteau. Mature dendritic cell generation promoted by lysophosphatidylcholine. J. Immunol. 169:1688–1695, 2002.

    Article  Google Scholar 

  8. Cowell, S. J., D. E. Newby, N. A. Boon, and A. T. Elder. Calcific aortic stenosis: same old story? Age Ageing 33:538–544, 2004.

    Article  Google Scholar 

  9. Cox, D. A., and M. L. Cohen. Lysophosphatidylcholine stimulates phospholipase D in human coronary endothelial cells: role of PKC. Am. J. Physiol. Heart Circ. Physiol. 271:H1706–H1710, 1996.

    Google Scholar 

  10. Fernley, H. Mammalian alkaline phosphatases. In: The Enzymes, edited by P. Boyer. New York, NY: Academic Press Inc., 1971, pp. 417–447.

    Google Scholar 

  11. Fill, M., and J. A. Copello. Ryanodine receptor calcium release channels. Physiol. Rev. 82:893–922, 2002.

    Google Scholar 

  12. Fisher, C. I., J. Chen, and W. D. Merryman. Calcific nodule morphogenesis by heart valve interstitial cells is strain dependent. Biomech. Model. Mechanobiol. 12:5–17, 2013.

    Article  Google Scholar 

  13. Freeman, R., and C. Otto. Spectrum of calcific aortic valve disease: pathogenesis, disease progression, and treatment strategies. Circulation 111:3316–3326, 2005.

    Article  Google Scholar 

  14. Grande-Allen, K. J., N. Osman, M. L. Ballinger, H. Dadlani, S. Marasco, and P. J. Little. Glycosaminoglycan synthesis and structure as targets for the prevention of calcific aortic valve disease. Cardiovasc. Res. 76:19–28, 2007.

    Article  Google Scholar 

  15. Gu, X., and K. S. Masters. Role of the Rho pathway in regulating valvular interstitial cell phenotype and nodule formation. Am. J. Physiol. Heart Circ. Physiol. 300:H448–H458, 2011.

    Article  Google Scholar 

  16. Henriksen, J. R., T. L. Andresen, L. N. Feldborg, L. Duelund, and J. H. Ipsen. Understanding detergent effects on lipid membranes: a model study of lysolipids. Biophys. J. 98:2199–2205, 2010.

    Article  Google Scholar 

  17. Jian, B., N. Narula, Q. Y. Li, E. R. Mohler, and R. J. Levy. Progression of aortic valve stenosis: TGF-β1 is present in calcified aortic valve cusps and promotes aortic valve interstitial cell calcification via apoptosis. Ann. Thorac. Surg. 75:457–465, 2003.

    Article  Google Scholar 

  18. Jung, S., Y. Lee, S. Han, Y. Kim, T. Nam, and D. Ahn. Lysophosphatidylcholine increases ca current via activation of protein kinase c in rabbit portal vein smooth muscle cells. Korean J. Physiol. Pharmacol. 12:31–35, 2008.

    Article  Google Scholar 

  19. Kankaanpää, M., H. Lehto, J. P. Pärkkä, M. Komu, A. Viljanen, E. Ferrannini, J. Knuuti, P. Nuutila, R. Parkkola, and P. Iozzo. Myocardial triglyceride content and epicardial fat mass in human obesity: relationship to left ventricular function and serum free fatty acid levels. J. Clin. Endocrinol. Metabol. 91:4689–4695, 2006.

    Article  Google Scholar 

  20. Kim, K. Apoptosis and calcification. Scanning Microsc. 9:1137–1178, 1995.

    Google Scholar 

  21. Kumar, A., D. C. Wiltz, and K. J. Grande-Allen. Gentamicin reduces calcific nodule formation by aortic valve interstitial cells in vitro. Cardiovasc. Eng. Technol. 4:16–25, 2013.

    Article  Google Scholar 

  22. Lakhani, S. A., A. Masud, K. Kuida, G. A. Porter, C. J. Booth, W. Z. Mehal, I. Inayat, R. A. Flavell, and G. A. Porter, Jr. Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311:847–851, 2006.

    Article  Google Scholar 

  23. Lee, J. S., J. D. Morrisett, and C. Tung. Detection of hydroxyapatite in calcified cardiovascular tissues. Atherosclerosis 224:340–347, 2012.

    Article  Google Scholar 

  24. Leung, Y. M., Y. Xion, Y. J. Ou, and C. Y. Kwan. Perturbation by lysophosphatidylcholine of membrane permeability in cultured vascular smooth muscle and endothelial cells. Life Sci. 63:965–973, 1998.

    Article  Google Scholar 

  25. Masamune, A., Y. Sakai, A. Satoh, M. Fujita, M. Yoshida, and T. Shimosegawa. Lysophosphatidylcholine induces apoptosis in AR42J Cells. Pancreas 22:75–83, 2001.

    Article  Google Scholar 

  26. Mathieu, P., P. Voisine, A. Pépin, R. Shetty, N. Savard, and F. Dagenais. Calcification of human valve interstitial cells is dependent on alkaline phosphatase activity. J. Heart Valve Dis. 14:353–357, 2005.

    Google Scholar 

  27. Matsumoto, T., T. Kobayashi, and K. Kamata. Role of lysophosphatidylcholine (LPC) in atherosclerosis. Curr. Med. Chem. 14:3209–3220, 2007.

    Article  Google Scholar 

  28. Migneco, F., S. J. Hollister, and R. K. Birla. Tissue-engineered heart valve prostheses: “state of the heart”. Regen. Med. 3:399–419, 2008.

    Article  Google Scholar 

  29. Mohler, III, E. R., M. K. Chawla, A. W. Chang, N. N. Vyavahare, R. J. Levy, L. Graham, F. H. Gannon, and E. R. Mohler. Identification and characterization of calcifying valve cells from human and canine aortic valves. J. Heart Valve Dis. 8:254–260, 1999.

    Google Scholar 

  30. Monzack, E. L., X. Gu, and K. S. Masters. Efficacy of simvastatin treatment of valvular interstitial cells varies with the extracellular environment. Arterioscler. Thromb. Vasc. Biol. 29:246–253, 2009.

    Article  Google Scholar 

  31. Murugesan, G., and P. L. Fox. Role of lysophosphatidylcholine in the inhibition of endothelial cell motility by oxidized low density lipoprotein. J. Clin. Invest. 97:2736–2744, 1996.

    Article  Google Scholar 

  32. Nadra, I., J. C. Mason, P. Philippidis, O. Florey, C. D. W. Smythe, G. M. Mccarthy, R. C. Landis, and D. O. Haskard. Proinflammatory activation of macrophages by basic calcium phosphate crystals via protein kinase C and MAP kinase pathways: a vicious cycle of inflammation and arterial calcification? Circ. Res. 96:1248–1256, 2005.

    Article  Google Scholar 

  33. Nakamura, Y., M. Yasukochi, S. Kobayashi, K. Uehara, A. Honda, R. Inoue, I. Imanaga, and A. Uehara. Cell membrane-derived lysophosphatidylcholine activates cardiac ryanodine receptor channels. Pflügers Archiv: Eur J Physiol. 453:455–462, 2007.

    Article  Google Scholar 

  34. Newton, A. C. Protein kinase C: structure, function, and regulation. J. Biol. Chem. 270:28495–28498, 1995.

    Article  Google Scholar 

  35. Nishimura, R. A. Aortic valve disease. Circulation 106:770–772, 2002.

    Article  Google Scholar 

  36. O’Brien, K. Pathogenesis of calcific aortic valve disease: a disease process comes of age (and a good deal more). Arterioscler. Thromb. Vasc. Biol. 26:1721–1728, 2006.

    Article  Google Scholar 

  37. Oishi, K., R. L. Raynor, P. A. Charp, and J. F. Kuo. Regulation of protein kinase C by lysophospholipids. Potential role in signal transduction. J. Biol. Chem. 263:6865–6871, 1988.

    Google Scholar 

  38. Otto, C. M. Calcific aortic stenosis — time to look more closely at the valve. New. Engl. J. Med. 359:1395–1398, 2008.

    Article  Google Scholar 

  39. Otto, C. M., J. Kuusisto, D. D. Reichenbach, A. M. Gown, and K. D. O’Brien. Characterization of the early lesion of “degenerative” valvular aortic stenosis: histological and immunohistochemical studies. Circulation 90:844–853, 1994.

    Article  Google Scholar 

  40. Payvandi, L. A., and V. H. Rigolin. Calcific mitral stenosis. Cardiol. Clin. 31:193–202, 2013.

    Article  Google Scholar 

  41. Pomerance, A. Ageing changes in human heart valves. Br. Heart J. 29:222–231, 1967.

    Article  Google Scholar 

  42. Rajamannan, N. M., F. J. Evans, E. Aikawa, K. J. Grande-Allen, L. L. Demer, D. D. Heistad, C. A. Simmons, K. S. Masters, P. Mathieu, K. D. O’Brien, F. J. Schoen, D. A. Towler, A. P. Yoganathan, and C. M. Otto. Calcific aortic valve disease: not simply a degenerative process: A review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: Calcific aortic valve disease-2011 update. Circulation 124:1783–1791, 2011.

    Article  Google Scholar 

  43. Schmitz, G., and K. Ruebsaamen. Metabolism and atherogenic disease association of lysophosphatidylcholine. Atherosclerosis 208:10–18, 2010.

    Article  Google Scholar 

  44. Sell, S., and R. E. Scully. Aging changes in the aortic and mitral valves: histologic and histochemical studies, with observations on the pathogenesis of calcific aortic stenosis and calcification of the mitral annulus. Am. J. Pathol. 46:345–365, 1965.

    Google Scholar 

  45. Shioi, A., Y. Nishizawa, S. Jono, H. Koyama, M. Hosoi, and H. Morii. Beta-glycerophosphate accelerates calcification in cultured bovine vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 15:2003–2009, 1995.

    Article  Google Scholar 

  46. Stephens, E. H., J. L. Carroll, and K. J. Grande-Allen. The use of collagenase III for the isolation of porcine aortic valvular interstitial cells: rationale and optimization. J. Heart Valve Dis. 16:175–183, 2007.

    Google Scholar 

  47. Stewart, B. F., D. Siscovick, B. K. Lind, J. M. Gardin, J. S. Gottdiener, V. E. Smith, D. W. Kitzman, and C. M. Otto. Clinical factors associated with calcific aortic valve disease. J. Am. Coll. Cardiol. 29:630–634, 1997.

    Article  Google Scholar 

  48. Stocker, R., and J. F. Keaney. Role of oxidative modifications in atherosclerosis. Physiol. Rev. 84:1381–1478, 2004.

    Article  Google Scholar 

  49. Stoll, L. L., H. J. Oskarsson, and A. A. Spector. Interaction of lysophosphatidylcholine with aortic endothelial cells. Am. J. Physiol. 262:H1853–H1860, 1992.

    Google Scholar 

  50. Sun, W., R. Zhao, Y. Yang, H. Wang, Y. Shao, and X. Kong. Comparative study of human aortic and mitral valve interstitial cell gene expression and cellular function. Genomics 101:326–335, 2013.

    Article  Google Scholar 

  51. Takahashi, M., H. Okazaki, Y. Ogata, K. Takeuchi, U. Ikeda, and K. Shimada. Lysophosphatidylcholine induces apoptosis in human endothelial cells through a p38-mitogen-activated protein kinase-dependent mechanism. Atherosclerosis 161:387–394, 2002.

    Article  Google Scholar 

  52. Tappia, P. S., and T. Singal. Phospholipid-mediated signaling and heart disease. Sub-cell. Biochem. 49:299–324, 2008.

    Article  Google Scholar 

  53. Vater, C., P. Kasten, and M. Stiehler. Culture media for the differentiation of mesenchymal stromal cells. Acta Biomater. 7:463–477, 2011.

    Article  Google Scholar 

  54. Venardos, N., N. Nadlonek, Q. Zhan, M. Weyant, T. Reece, X. Meng, and D. Fullerton. Aortic valve calcification is mediated by a differential response of aortic valve interstitial cells to inflammation. J. Surg. Res. 190:1–8, 2014.

    Article  Google Scholar 

  55. Vickers, K. C., F. Castro-Chavez, and J. D. Morrisett. Lyso-phosphatidylcholine induces osteogenic gene expression and phenotype in vascular smooth muscle cells. Atherosclerosis 211:122–129, 2010.

    Article  Google Scholar 

  56. Wallin, R., N. Wajih, G. T. Greenwood, and D. C. Sane. Arterial calcification: a review of mechanisms, animal models, and the prospects for therapy. Med. Res. Rev. 21:274–301, 2001.

    Article  Google Scholar 

  57. Walsh, J. G., S. P. Cullen, C. Sheridan, A. U. Lüthi, C. Gerner, and S. J. Martin. Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc. Nat. Acad. USA 105:12815–12819, 2008.

    Article  Google Scholar 

  58. Xu, Y. J., V. Panagia, Q. Shao, X. Wang, and N. S. Dhalla. Phosphatidic acid increases intracellular free Ca2 + and cardiac contractile force. Am. J. Physiol. 271:H651–H659, 1996.

    Google Scholar 

  59. Yip, C. Y. Y., M. C. Blaser, Z. Mirzaei, X. Zhong, and C. A. Simmons. Inhibition of pathological differentiation of valvular interstitial cells by C-type natriuretic peptide. Arterioscler. Thromb. Vasc. Biol. 31:1881–1889, 2011.

    Article  Google Scholar 

  60. Yip, C. Y. Y., J.-H. Chen, R. Zhao, and C. A. Simmons. Calcification by valve interstitial cells is regulated by the stiffness of the extracellular matrix. Arterioscler. Thromb. Vasc. Biol. 29:936–942, 2009.

    Article  Google Scholar 

  61. Yu, L., T. Netticadan, Y. Xu, V. Panagia, and N. S. Dhalla. Mechanisms of lysophosphatidylcholine-induced increase in intracellular calcium in rat cardiomyocytes. J. Pharmacol. Exp. Ther. 286:1–8, 1998.

    Google Scholar 

Download references

Acknowledgments

This research was supported by National Institutes of Health R21 HL104377, T32 HL007812, T32 GM008362, and T32GM007330.

Conflict of interest

Dena Wiltz was supported by NIH training grant T32 GM008362. Richard Han was supported by NIH training grant T32 HL007812. Reid Wilson was supported by NIH training grant T32GM007330. Aditya Kumar declares that he has no conflicts of interest. Joel Morrisett received funding from NIH research grant R21 HL104377 and was the principal investigator of NIH training grant T32 HL007812. Jane Grande-Allen has served as a consultant for Edwards Lifesciences and received funding from NIH research grant R21 HL104377.

Human Subjects Declaration

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

Animal Studies Declaration

No animal studies were carried out by the authors for this article. Animal tissues were purchased from a commercial abattoir.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jane Grande-Allen.

Additional information

Associate Editor Hanjoong Jo oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiltz, D.C., Han, R.I., Wilson, R.L. et al. Differential Aortic and Mitral Valve Interstitial Cell Mineralization and the Induction of Mineralization by Lysophosphatidylcholine In Vitro . Cardiovasc Eng Tech 5, 371–383 (2014). https://doi.org/10.1007/s13239-014-0197-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-014-0197-3

Keywords

Navigation