Skip to main content

Advertisement

Log in

Engineering Angiogenesis for Myocardial Infarction Repair: Recent Developments, Challenges, and Future Directions

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Myocardial infarction is a cardiovascular disorder that remains a critical health issue worldwide. Because of its intrinsic inability to regenerate, cardiac tissue fails to repair itself after myocardial infarction. Cardiovascular engineering is a promising approach to regenerating myocardium for myocardial infarction repair. Despite explosive growth in research and interest in this field, cardiovascular regenerative medicine faces many challenges, with the need for rapid vascularization being the most pressing. Due to the high metabolic demand of cardiac cells, myocytes transplanted or implanted via cardiac scaffolds in the infarcted region do not survive without the timely formation of a microvascular network in the infarcted area or within the scaffolds. To address this issue, various strategies have been developed based on angiogenesis stimulation, prevascularization, and inosculation to promote microvascular network formation within the cardiac scaffolds. This paper describes cardiac tissue engineering strategies, key challenges in cardiovascular regenerative medicine, and various vascularization strategies, with an aim to review recent advances and developments in engineering vascularization and inosculation approaches towards the rapid integration of cardiac scaffolds, once implanted, with the host tissue. Challenges in engineering angiogenesis and future directions to address the issue of rapid inosculation are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Adams, W. J., Y. Zhang, J. Cloutier, P. Kuchimanchi, G. Newton, S. Sehrawat, W. C. Aird, T. N. Mayadas, F. W. Luscinskas, and G. Garcia-Cardena. Functional vascular endothelium derived from human induced pluripotent stem cells. Stem Cell Rep. 1:105–113, 2013.

    Google Scholar 

  2. Aicher, A., A. M. Zeiher, and S. Dimmeler. Mobilizing endothelial progenitor cells. Hypertension 45:321–325, 2005.

    Google Scholar 

  3. Alperin, C., P. W. Zandstra, and K. A. Woodhouse. Polyurethane films seeded with embryonic stem cell-derived cardiomyocytes for use in cardiac tissue engineering. Biomaterials 26:7377–7386, 2005.

    Google Scholar 

  4. Amsden, B. G., L. Timbart, D. Marecak, R. Chapanian, M. Y. Tse, and S. C. Pang. VEGF-induced angiogenesis following localized delivery via injectable, low viscosity poly(trimethylene carbonate). J. Control Release 145:109–115, 2010.

    Google Scholar 

  5. Andrae, J., R. Gallini, and C. Betsholtz. Role of platelet derived growth factors in physiology and medicine. Genes Dev. 22:1276–1312, 2008.

    Google Scholar 

  6. Anzai, T. Post-infarction inflammation and left ventricular remodeling: a double-edged sword. Circ. J. 77:580–587, 2013.

    Google Scholar 

  7. Askari, A. T., S. Unzek, Z. B. Popovic, C. K. Goldman, F. Forudi, M. Kiedrowski, A. Rovner, S. G. Ellis, J. D. Thomas, P. E. DiCorleto, E. J. Topol, and M. S. Penn. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362:697–703, 2003.

  8. Athanasuleas, C. L., G. D. Buckberg, A. W. Stanley, W. Siler, V. Dor, M. Di Donato, L. Menicanti, S. Almeida de Oliveira, F. Beyersdorf, I. L. Kron, H. Suma, N. T. Kouchoukos, W. Moore, P. M. McCarthy, M. C. Oz, F. Fontan, M. L. Scott, and K. A. Accola. Surgical ventricular restoration in the treatment of congestive heart failure due to post-infarction ventricular dilation. J. Am. Coll. Cardiol. 44:1439–1445, 2004.

    Google Scholar 

  9. Auger, F. A., L. Gibot, and D. Lacroix. The pivotal role of vascularization in tissue engineering. Annu. Rev. Biomed. Eng. 15:177–200, 2013.

    Google Scholar 

  10. Baranski, J. D., R. R. Chaturvedi, K. R. Stevens, J. Eyckmans, B. Carvalho, R. D. Solorzano, M. T. Yang, J. S. Miller, S. N. Bhatia, and C. S. Chen. Geometric control of vascular networks to enhance engineered tissue integration and function. Proc. Natl Acad. Sci. U.S.A. 110:7586–7591, 2013.

    Google Scholar 

  11. Bauer, S. M., R. J. Bauer, Z. J. Liu, H. Chen, L. Goldstein, and O. C. Velazquez. Vascular endothelial growth factor-C promotes vasculogenesis, angiogenesis, and collagen constriction in three-dimensional collagen gels. J. Vasc. Surg. 41:699–707, 2005.

    Google Scholar 

  12. Beltrami, A. P., L. Barlucchi, D. Torella, M. Baker, F. Limana, S. Chimenti, H. Kasahara, M. Rota, E. Musso, K. Urbanek, A. Leri, J. Kajstura, B. Nadal-Ginard, and P. Anversa. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776, 2003.

    Google Scholar 

  13. Berthod, F., J. Symes, N. Tremblay, J. A. Medin, and F. A. Auger. Spontaneous fibroblast-derived pericyte recruitment in a human tissue-engineered angiogenesis model in vitro. J. Cell. Physiol. 227:2130–2137, 2012.

    Google Scholar 

  14. Bettinger, C. J. J., E. J. J. Weinberg, K. M. Kulig, J. P. Vacanti, Y. Wang, J. T. Borenstein, and R. Langer. Three-dimensional microfluidic tissue-engineering scaffolds using a flexible biodegradable polymer. Adv. Mater. 18:165–169, 2006.

    Google Scholar 

  15. Beulens, J. W., M. L. Bots, F. Atsma, M. L. Bartelink, M. Prokop, J. M. Geleijnse, J. C. Witteman, D. E. Grobbee, and Y. T. van der Schouw. High dietary menaquinone intake is associated with reduced coronary calcification. Atherosclerosis 203:489–493, 2009.

  16. Black, A. F., F. Berthod, N. L’Heureux, L. Germain, and F. A. Auger. In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J. 12:1331–1340, 1998.

    Google Scholar 

  17. Bonora, E., S. Kiechl, J. Willeit, F. Oberhollenzer, G. Egger, J. B. Meigs, R. C. Bonadonna, and M. Muggeo. Insulin resistance as estimated by homeostasis model assessment predicts incident symptomatic cardiovascular disease in Caucasian subjects from the general population the bruneck study. Diabetes Care 30:318–324, 2007.

    Google Scholar 

  18. Bonow, R. O., G. Maurer, K. L. Lee, T. A. Holly, P. F. Binkley, P. Desvigne-Nickens, J. Drozdz, P. S. Farsky, A. M. Feldman, T. Doenst, R. E. Michler, D. S. Berman, J. C. Nicolau, P. A. Pellikka, K. Wrobel, N. Alotti, F. M. Asch, L. E. Favaloro, L. She, E. J. Velazquez, R. H. Jones, and J. A. Panza. Myocardial viability and survival in ischemic left ventricular dysfunction. N. Engl. J. Med. 364:1617–1625, 2011.

    Google Scholar 

  19. Bramfeldt, H., G. Sabra, V. Centis, and P. Vermette. Scaffold vascularization: a challenge for three-dimensional tissue engineering. Curr. Med. Chem. 17:3944–3967, 2010.

  20. Brutsaert, D. L. Cardiac endothelial-myocardial signalling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol. Rev. 83:59–115, 2003.

    Google Scholar 

  21. Calvillo, L., R. Latini, J. Kajstura, A. Leri, P. Anversa, P. Ghezzi, M. Salio, A. Cerami, and M. Brines. Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling. Proc. Natl Acad. Sci. U.S.A. 100:4802–4806, 2003.

    Google Scholar 

  22. Camelliti, P., T. K. Borg, and P. Kohl. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc. Res. 65:40–51, 2005.

    Google Scholar 

  23. Campbell, P. G., and L. E. Weiss. Tissue engineering with the aid of inkjet printers. Expert Opin. Biol. Ther. 7:1123–1127, 2007.

    Google Scholar 

  24. Carmeliet, P., and R. K. Jain. Angiogenesis in cancer and other diseases. Nature 407:249–257, 2000.

    Google Scholar 

  25. Carmeliet, P., and R. K. Jain. Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307, 2011.

    Google Scholar 

  26. Carrier, R. L., M. Rupnick, R. Langer, F. J. Schoen, L. E. Freed, and G. Vunjak-Novakovic. Perfusion improves tissue architecture of engineered cardiac muscle. Tissue Eng. 8:175–188, 2002.

    Google Scholar 

  27. Caspi, O., A. Lesman, Y. Basevitch, A. Gepstein, G. Arbel, I. Huber, L. Gepstein, and S. Levenberg. Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ. Res. 100:263–272, 2007.

    Google Scholar 

  28. Chamberlain, M. D., R. Gupta, and M. V. Sefton. Chimeric vessel tissue engineering driven by endothelialized modules in immunosuppressed Sprague-Dawley rats. Tissue Eng. Part A 17:151–160, 2011.

    Google Scholar 

  29. Chen, Q. Z., S. E. Harding, N. N. Ali, A. R. Lyon, and A. R. Boccaccini. Myocardial tissue engineering. In: Tissue Engineering Using Ceramics and Polymers, edited by A. R. Boccaccini and J. Gough. Woodhead Publishing Limited, 2008.

  30. Chen, X., A. S. Aledia, C. M. Ghajar, C. K. Griffith, A. J. Putnam, C. C. Hughes, and S. C. George. Revascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature. Tissue Eng. Part A 15:1363–1371, 2009.

    Google Scholar 

  31. Chen, Q. Z., S. E. Harding, N. N. Ali, A. R. Lyon, and A. R. Boccaccini. Biomaterials in cardiac tissue engineering: ten years of research survey. Mater. Sci. Eng. 59:1–37, 2008.

    Google Scholar 

  32. Chiu, L. L., M. Radisic, and G. Vunjak-Novakovic. Bioactive scaffolds for engineering vascularized cardiac tissues. Macromol. Biosci. 10:1286–1301, 2010.

  33. Chiu, L. L., M. Montgomery, Y. Liang, H. Liu, and M. Radisic. Perfusable branching microvessel bed for vascularization of engineered tissues. Proc. Natl Acad. Sci. U.S.A. 109:E3414–E3423, 2012.

    Google Scholar 

  34. Chiu, L. L., and M. Radisic. Scaffolds with covalently immobilized VEGF and Angiopoietin-1 for vascularization of engineered tissues. Biomaterials 31:226–241, 2010.

    Google Scholar 

  35. Chiu, L. L., M. Radisic, and G. Vunjak-Novakovic. Bioactive scaffolds for engineering vascularized cardiac tissues. Macromol. Biosci. 10:1286–1301, 2010.

    Google Scholar 

  36. Chiu, L. L., L. A. Reis, A. Momen, and M. Radisic. Controlled release of thymosin beta4 from injected collagen-chitosan hydrogels promotes angiogenesis and prevents tissue loss after myocardial infarction. Regen. Med. 7:523–533, 2012.

    Google Scholar 

  37. Chiu, L. L., R. D. Weisel, R. K. Li, and M. Radisic. Defining conditions for covalent immobilization of angiogenic growth factors onto scaffolds for tissue engineering. J. Tissue. Eng. Regen. Med. 5:69–84, 2011.

    Google Scholar 

  38. Cho, S. W., S. H. Moon, S. H. Lee, S. W. Kang, J. Kim, J. M. Lim, H. S. Kim, B. S. Kim, and H. M. Chung. Improvement of postnatal neovascularization by human embryonic stem cell derived endothelial-like cell transplantation in a mouse model of hindlimb ischemia. Circulation 116:2409–2419, 2007.

    Google Scholar 

  39. Choi, S. W., Y. Zhang, M. R. Macewan, and Y. Xia. Neovascularization in biodegradable inverse opal scaffolds with uniform and precisely controlled pore sizes. Adv. Healthc. Mater. 2:145–154, 2013.

    Google Scholar 

  40. Chong, J. J. H., X. Yang, C. W. Don, E. Minami, Y. W. Liu, J. J. Weyers, W. M. Mahoney, B. V. Biber, S. M. Cook, N. J. Palpant, J. A. Gantz, J. A. Fugate, V. Muskheli, G. M. Gough, K. W. Vogel, C. A. Astley, C. E. Hotchkiss, A. Baldessari, L. Pabon, H. Reinecke, E. A. Gill, V. Nelson, H. P. Kiem, M. A. Laflamme, and C. E. Murry. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510:273–277, 2014.

    Google Scholar 

  41. Chrobak, K. M., D. R. Potter, and J. Tien. Formation of perfused, functional microvascular tubes in vitro. Microvasc. Res. 71:185–196, 2006.

    Google Scholar 

  42. Chu, H., and Y. Wang. Therapeutic angiogenesis: controlled delivery of angiogenic factors. Ther. Deliv. 3:693–714, 2012.

    Google Scholar 

  43. Chung, Y. I., S. K. Kim, Y. K. Lee, S. J. Park, K. O. Cho, S. H. Yuk, G. Tae, and Y. H. Kim. Efficient revascularization by VEGF administration via heparin-functionalized nanoparticle-fibrin complex. J. Control Release 143:282–289, 2010.

    Google Scholar 

  44. Chung, J. C. Y., and D. Shum-Tim. Neovascularization in tissue engineering. Cells 1:1246–1260, 2012.

    Google Scholar 

  45. Co, C. C., Y. C. Wang, and C. C. Ho. Biocompatible micropatterning of two different cell types. J. Am. Chem. Soc. 127:1598–1599, 2005.

    Google Scholar 

  46. Cohen, D. J., B. Van Hout, P. W. Serruys, F. W. Mohr, C. Macaya, P. den Heijer, M. M. Vrakking, K. Wang, E. M. Mahoney, S. Audi, K. Leadley, K. D. Dawkins, and A. P. Kappetein. Quality of life after PCI with drug-eluting stents or coronary-artery bypass surgery. N. Engl. J. Med. 364:1016–1026, 2011.

    Google Scholar 

  47. Copeland, J. G., R. G. Smith, F. A. Arabia, P. E. Nolan, G. K. Sethi, P. H. Tsau, D. McClellan, and M. J. Slepian. Cardiac replacement with a total artificial heart as a bridge to transplantation. N. Engl. J. Med. 351:859–867, 2004.

    Google Scholar 

  48. Cui, X., and T. Boland. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30:6221–6227, 2009.

    Google Scholar 

  49. Culver, J. C., J. C. Hoffmann, R. A. Poche, J. H. Slater, J. L. West, and M. E. Dickinson. Three dimensional biomimetic patterning in hydrogels to guide cellular organization. Adv. Mater. 24:2344–2348, 2012.

    Google Scholar 

  50. Dar, A., M. Shachar, J. Leor, and S. Cohen. Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds. Biotechnol. Bioeng. 80:305–312, 2002.

    Google Scholar 

  51. Deb, A., S. Wang, K. A. Skelding, D. Miller, D. Simper, and N. M. Caplice. Bone marrow-derived cardiomyocytes are present in adult human heart: a study of gender-mismatched bone marrow transplantation patients. Circulation 107:1247–1249, 2003.

    Google Scholar 

  52. Defilippi, P., C. Olivo, M. Venturino, L. Dolce, L. Silengo, and G. Tarone. Actin cytoskeleton organization in response to integrin-mediated adhesion. Microsc. Res. Tech. 47:67–78, 1999.

    Google Scholar 

  53. Discher, D. E., D. J. Mooney, and P. W. Zandstra. Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–1677, 2009.

    Google Scholar 

  54. Dobaczewski, M., C. Gonzalez-Quesada, and N. G. Frangogiannis. The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J. Mol. Cell. Cardiol. 48:504–511, 2010.

    Google Scholar 

  55. Dobnig, H., S. Pilz, H. Scharnagl, W. Renner, U. Seelhorst, B. Wellnitz, J. Kinkeldei, B. O. Boehm, G. Weihrauch, and W. Maerz. Independent association of low serum 25-hydroxyvitamin d and 1,25-dihydroxyvitamin d levels with all-cause and cardiovascular mortality. Arch. Intern. Med. 168:1340–1349, 2008.

    Google Scholar 

  56. Dvir, T., A. Kedem, E. Ruvinov, O. Levy, I. Freeman, N. Landad, R. Holbovad, M. S. Feinbergd, S. Drore, Y. Etzione, J. Leord, and S. Cohena. Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Proc. Natl Acad. Sci. U.S.A. 106:14990–14995, 2009.

    Google Scholar 

  57. Eppler, S. M., D. L. Combs, T. D. Henry, J. J. Lopez, S. G. Ellis, J. H. Yi, B. H. Annex, E. R. Mccluskey, and T. F. Zioncheck. A target-mediated model to describe the pharmacokinetics and hemodynamic effects of recombinant human vascular endothelial growth factor in humans. Clin. Pharmacol. Ther. 72:20–32, 2002.

    Google Scholar 

  58. Etzion, S., L. H. Kedes, R. A. Kloner, and J. Leor. Myocardial regeneration: present and future trends. Am. J. Cardiovasc. Drugs 1:233–244, 2001.

    Google Scholar 

  59. Evans, S. M., C. Mummery, and P. A. Doevendans. Progenitor cells for cardiac repair. Semin. Cell Dev. Biol. 18:153–160, 2007.

    Google Scholar 

  60. Fernandes, S., A. V. Naumova, W. Z. Zhu, M. A. Laflamme, J. Gold, and C. E. Murry. Human embryonic stem cell-derived cardiomyocytes engraft but do not alter cardiac remodeling after chronic infarction in rats. J. Mol. Cell. Cardiol. 49:941–949, 2010.

    Google Scholar 

  61. Folkman, J., and C. Haudenschild. Angiogenesis in vitro. Nature 288:551–556, 1980.

    Google Scholar 

  62. Formiga, F. R., B. Pelacho, E. Garbayo, G. Abizanda, J. J. Gavira, T. Simon-Yarza, M. Mazo, E. Tamayo, C. Jauquicoa, C. Ortiz-de-Solorzano, F. Pro´sper, and M. J. Blanco-Prieto. Sustained release of VEGF through PLGA microparticles improves vasculogenesis and tissue remodeling in an acute myocardial ischemia-reperfusion model. J. Control Release 147:30–37, 2010.

    Google Scholar 

  63. Formiga, F. R., B. Pelacho, E. Garbayo, I. Imbuluzqueta, P. Díaz-Herráez, G. Abizanda, J. J. Gavira, T. Simón-Yarza, E. Albiasub, E. Tamayoa, F. Prósper, and M. J. Blanco-Prieto. Controlled delivery of fibroblast growth factor-1 and neuregulin-1 from biodegradablemicroparticles promotes cardiac repair in a rat myocardial infarction model through activation of endogenous regeneration. J. Control Release 73:132–139, 2014.

    Google Scholar 

  64. Frangogiannis, N. G., L. H. Mendoza, G. Ren, S. Akrivakis, P. L. Jackson, L. H. Michael, C. W. Smith, and M. L. Entman. MCSF expression is induced in healing myocardial infarcts and may regulate monocyte and endothelial cell phenotype. Am. J. Physiol. Heart Circ. Physiol. 285:H483–H492, 2003.

    Google Scholar 

  65. Frangogiannis, N. G., C. W. Smith, and M. L. Entman. The inflammatory response in myocardial infarction. Cardiovasc. Res. 53:31–47, 2002.

    Google Scholar 

  66. Freeman, I., and S. Cohen. The influence of the sequential delivery of angiogenic factors from affinity-binding alginate scaffolds on vascularization. Biomaterials 30:2122–2131, 2009.

    Google Scholar 

  67. Gao, J., J. Liu, Y. Gao, C. Wang, Y. Zhao, B. Chen, Z. Xiao, Q. Miao, and J. Dai. A myocardial patch made of collagen membranes loaded with collagen-binding human vascular endothelial growth factor accelerates healing of the injured rabbit heart. Tissue Eng. Part A 17:2739–2747, 2011.

    Google Scholar 

  68. Geiger, F., H. Lorenz, W. Xu, K. Szalay, P. Kasten, L. Claes, P. Augat, and W. Richter. VEGF producing bone marrow stromal cells (BMSC) enhance vascularization and resorption of a natural coral bone substitute. Bone 41:516–522, 2007.

    Google Scholar 

  69. Gerhardt, H., M. Golding, M. Fruttiger, C. Ruhrberg, A. Lundkvist, A. Abramsson, M. Jeltsch, C. Mitchell, K. Alitalo, D. Shima, and C. Betsholtz. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161:1163–1177, 2003.

    Google Scholar 

  70. Go, A. S., D. Mozaffarian, V. L. Roger, E. J. Benjamin, J. D. Berry, M. J. Blaha, S. Dai, E. S. Ford, C. S. Fox, S. Franco, H. J. Fullerton, C. Gillespie, S. M. Hailpern, J. A. Heit, V. J. Howard, M. D. Huffman, S. E. Judd, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, R. H. Mackey, D. J. Magid, G. M. Marcus, A. Marelli, D. B. Matchar, D. K. McGuire, E. R. Mohler, III, C. S. Moy, M. E. Mussolino, R. W. Neumar, G. Nichol, D. K. Pandey, N. P. Paynter, M. J. Reeves, P. D. Sorlie, J. Stein, A. Towfighi, T. N. Turan, S. S. Virani, N. D. Wong, D. Woo, and M. B. Turner. Heart disease and stroke statistics-2014 update: a report from the American Heart Association. Circulation 129:e28–e292, 2014.

    Google Scholar 

  71. Golub, J. S., Y. T. Kim, C. L. Duvall, R. V. Bellamkonda, D. Gupta, A. S. Lin, D. Weiss, W. Robert Taylor, and R. E. Guldberg. Sustained VEGF delivery via PLGA nanoparticles promotes vascular growth. Am. J. Physiol. Heart Circ. Physiol. 298:H1959–H1965, 2010.

  72. Guo, H. D., G. H. Cui, J. J. Yang, C. Wang, J. Zhu, L. S. Zhang, J. Jiang, and S. J. Shao. Sustained delivery of VEGF from designer self-assembling peptides improves cardiac function after myocardial infarction. Biochem. Biophys. Res. Commun. 424:105–111, 2012.

    Google Scholar 

  73. Gupta, R., and M. V. Sefton. Application of an endothelialized modular construct for islet transplantation in syngeneic and allogeneic immunosuppressed rat models. Tissue Eng. Part A 17:2005–2015, 2011.

    Google Scholar 

  74. Hahn, M. S., J. S. Miller, and J. L. West. Laser scanning lithography for surface micropatterning on hydrogels. Adv. Mater. 17:2939–2942, 2005.

    Google Scholar 

  75. Hahn, M. S., J. S. Miller, and J. L. West. Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Adv. Mater. 18:2679–2684, 2006.

    Google Scholar 

  76. Hahn, M. S., L. J. Taite, J. J. Moon, M. C. Rowland, K. A. Ruffino, and J. L. West. Photolithographic patterning of polyethylene glycol hydrogels. Biomaterials 27:2519–2524, 2006.

    Google Scholar 

  77. Hao, X., E. A. Silva, A. Mansson-Broberg, K. H. Grinnemo, A. J. Siddiqui, G. Dellgren, E. Wa¨rdell, L. A. Brodin, D. J. Mooney, and C. Sylve´n. Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovasc. Res. 75:178–185, 2007.

    Google Scholar 

  78. Heeschen, C., A. Aicher, R. Lehmann, S. Fichtlscherer, M. Vasa, C. Urbich, C. Mildner-Rihm, H. Martin, A. M. Zeiher, and S. Dimmeler. Erythropoietin is a potent physiological stimulus for endothelial progenitor cell mobilization. Blood 102:1340–1346, 2003.

    Google Scholar 

  79. Hench, L. L., and J. M. Polak. Third-generation biomedical materials. Science 295:1014–1017, 2004.

    Google Scholar 

  80. Henry, T. D., K. Rocha-Singh, J. M. Isner, D. J. Kereiakes, F. J. Giordano, M. Simons, D. W. Losordo, R. C. Hendel, R. O. Bonow, S. M. Eppler, T. F. Zioncheck, E. B. Holmgren, and E. R. McCluskey. Intracoronary administration of recombinant human vascular endothelial growth factor to patients with coronary artery disease. Am. Heart J. 142:872–880, 2001.

    Google Scholar 

  81. Hiasa, K., M. Ishibashi, K. Ohtani, S. Inoue, Q. Zhao, S. Kitamoto, M. Sata, T. Ichiki, A. Takeshita, and K. Egashira. Gene transfer of stromal cell-derived factor-1{alpha} enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway: Next-generation chemokine therapy for therapeutic neovascularization. Circulation 109:2454–2461, 2004.

    Google Scholar 

  82. Holdings I Inc. IK-5001 for the prevention of remodeling of the ventricle and congestive heart failure after acute myocardial infarction. In: Clinical Trial Detail. 2010. http://clinicaltrials.gov/show/NCT01226563.

  83. Hou, L., and N. Huang. Extracellular matrix-mediated endothelial differentiation of human induced pluripotent stem cells. FASEB J. 28(1152):4, 2014.

    Google Scholar 

  84. Huang, Y. C., D. Kaigler, K. G. Rice, P. H. Krebsbach, and D. J. Mooney. Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regeneration. J. Bone Miner. Res. 20:848–857, 2005.

    Google Scholar 

  85. Huang, N. F., H. Niiyama, C. Peter, A. De, Y. Natkunam, F. Fleissner, Z. Li, M. D. Rollins, J. C. Wu, S. S. Gambhir, and J. P. Cooke. Embryonic stem cell-derived endothelial cells engraft into the ischemic hindlimb and restore perfusion. Arterioscler. Thromb. Vasc. Biol. 30:984–991, 2010.

    Google Scholar 

  86. Huang, H., S. Oizumi, N. Kojima, T. Niino, and Y. Sakai. Avidin-biotin binding-based cell seeding and perfusion culture of liverderived cells in a porous scaffold with a three-dimensional interconnected flow channel network. Biomaterials 28:3815–3823, 2007.

    Google Scholar 

  87. Hur, J., C. H. Yoon, H. S. Kim, J. H. Choi, H. J. Kang, K. K. Hwang, B. H. Oh, M. M. Lee, and Y. B. Park. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler. Thromb. Vasc. Biol. 24:288–293, 2004.

    Google Scholar 

  88. Hutton, D. L., and W. L. Grayson. Stem cell-based approaches to engineering vascularised bone. Curr. Opin. Chem. Biol. 3:75–82, 2014.

    Google Scholar 

  89. Hwang, N. S., S. Varghese, and J. Elisseeff. Controlled differentiation of stem cells. Adv. Drug Deliv. Rev. 60:199, 2008.

    Google Scholar 

  90. Izadifar, M., A. Haddadi, and X. B. Chen. Rate-programming of nano-particulate delivery systems for smart bioactive scaffolds in tissue engineering. Nanotechnology 2014 (in review).

  91. Jessup, M., and S. Brozena. Heart failure. N. Engl. J. Med. 348:2007–2018, 2003.

    Google Scholar 

  92. Johnston, T. D., and K. L. Christman. Injectable hydrogel therapies and their delivery strategies for treating myocardial infarction. Expert Opin. Drug Deliv. 10:59–72, 2013.

    Google Scholar 

  93. Jones, R. H., E. J. Velazquez, R. E. Michler, G. Sopko, J. K. Oh, C. M. O’Connor, J. A. Hill, L. Menicanti, Z. Sadowski, P. Desvigne-Nickens, J. L. Rouleau, and K. L. Lee. Coronary bypass surgery with or without surgical ventricular reconstruction. N. Engl. J. Med. 360:1705–1717, 2009.

    Google Scholar 

  94. Kadner, A., G. Zund, C. Maurus, C. Breymann, S. Yakarisik, G. Kadner, M. Turina, and S. P. Hoerstrup. Human umbilical cord cells for cardiovascular tissue engineering: A comparative study. Eur. J. Cardiothorac. Surg. 25:635–641, 2004.

    Google Scholar 

  95. Kakio, T., A. Matsumori, K. Ono, H. Ito, K. Matsushima, and S. Sasayama. Roles and relationship of macrophages and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in the ischemic and reperfused rat heart. Lab. Invest. 80:1127–1136, 2000.

    Google Scholar 

  96. Kalka, C., H. Masuda, T. Takahashi, W. M. Kalka-Moll, M. Silver, M. Kearney, T. Li, J. M. Isner, and T. Asahara. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularisation. Proc. Natl Acad. Sci. U.S.A. 97:3422–3427, 2000.

    Google Scholar 

  97. Kamelger, F. S., R. Marksteiner, E. Margreiter, G. Klima, G. Wechselberger, S. Hering, and H. Piza. A comparative study of three different biomaterials in the engineering of skeletal muscle using a rat animal model. Biomaterials 25:1649–1655, 2004.

    Google Scholar 

  98. Kelm, J. M., V. Lorber, J. G. Snedeker, D. Schmidt, A. Broggini-Tenzer, M. Weisstanner, B. Odermatt, A. Mol, G. Zünd, and S. P. Hoerstrup. A novel concept for scaffold-free vessel tissue engineering: self-assembly of micro tissue building blocks. J. Biotechnol. 148:46–55, 2010.

    Google Scholar 

  99. Kennedy, J. P., S. P. McCandless, A. Rauf, L. M. Williams, J. Hillam, and R. W. Hitchcock. Engineered channels enhance cellular density in perfused scaffolds. Acta Biomater. 7:3896–3904, 2011.

  100. Kocher, A. A., M. D. Schuster, M. J. Szabolcs, S. Takuma, D. Burk-hoff, J. Wang, S. Homma, N. M. Edwards, and S. Itescu. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat. Med. 7:430–436, 2001.

    Google Scholar 

  101. Kofidis, T., P. Akhyari, B. Wachsmann, J. Boublik, K. Mueller-Stahl, R. Leyh, S. Fischer, and A. Haverich. A novel bioartificial myocardial tissue and its prospective use in cardiac surgery. Eur. J. Cardio-Thorac. Surg. 2:238–243, 2002.

    Google Scholar 

  102. Koike, N., D. Fukumura, O. Gralla, P. Au, J. S. Schechner, and R. K. Jain. Tissue engineering: creation of long-lasting blood vessels. Nature 428:138–139, 2004.

    Google Scholar 

  103. Kotov, N. A., Y. Liu, S. Wang, C. Cumming, M. Eghtedari, G. Vargas, M. Motamedi, J. Nichols, and J. Cortiella. Inverted colloidal crystals as three-dimensional cell scaffolds. Langmuir 20:7887–7892, 2004.

    Google Scholar 

  104. Kunz-Schughart, L. A., J. A. Schroeder, M. Wondrak, F. van Rey, K. Lehle, F. Hofstaedter, and D. N. Wheatley. Potential of fibroblasts to regulate the formation of three-dimensional vessel-like structures from endothelial cells in vitro. Am. J. Physiol. Cell Physiol. 290:C1385–C1398, 2006.

    Google Scholar 

  105. Laflamme, M. A., K. Y. Chen, A. V. Naumova, V. Muskheli, J. A. Fugate, S. K. Dupras, H. Reinecke, C. Xu, M. Hassanipour, S. Police, C. O’Sullivan, L. Collins, Y. Chen, E. Minami, E. A. Gill, S. Ueno, C. Yuan, J. Gold, and C. E. Murry. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol. 25:1015–1024, 2007.

    Google Scholar 

  106. Laflamme, M. A., D. Myerson, J. E. Saffitz, and C. E. Murry. Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. Circ. Res. 90:634–640, 2002.

    Google Scholar 

  107. Lambert, J. M., E. F. Lopez, and M. L. Lindsey. Macrophage roles following myocardial infarction. Int. J. Cardiol. 130:147–158, 2008.

    Google Scholar 

  108. Laschke, M. W., S. Kleer, C. Scheuer, S. Schuler, P. Garcia, D. Eglin, M. Alini, and M. D. Menger. Vascularization of porous scaffolds is improved by incorporation of adipose tissue-derived microvasculature fragments. Eur. Cell Mater. 24:266–277, 2012.

    Google Scholar 

  109. Laschke, M. W., H. Mussawy, S. Schuler, A. Kazakov, M. Rucker, D. Eglin, M. Alini, and M. D. Menger. Short-term cultivation of in situ prevascularized tissue constructs accelerates inosculation of their preformed microvascular networks after implantation into the host tissue. Tissue Eng. Part A 17:841–852, 2011.

    Google Scholar 

  110. Laschke, M. W., M. Rucker, G. Jensen, C. Carvalho, R. Mulhaupt, N. C. Gellrich, and M. D. Menger. Improvement of vascularization of PLGA scaffolds by inosculation of in situ-preformed functional blood vessels with the host microvasculature. Ann. Surg. 248:939–948, 2008.

    Google Scholar 

  111. Laschke, M. W., M. Rücker, G. Jensen, C. Carvalho, R. Mülhaupt, N. C. Gellrich, and M. D. Menger. Incorporation of growth factor containing Matrigel promotes vascularization of porous PLGA scaffolds. J. Biomed. Mater. Res. A. 85:397–407, 2008.

    Google Scholar 

  112. Laschke, M. W., B. Vollmar, and M. D. Menger. Inosculation: connecting the life-sustaining pipelines. Tissue Eng. Part B 15:455–465, 2009.

    Google Scholar 

  113. Laugwitz, K. L., A. Moretti, L. Caron, A. Nakano, and K. R. Chien. Islet1 cardiovascular progenitors: a single source for heart lineages. Development 135:193–205, 2008.

  114. Lazarous, D. F., E. F. Unger, S. E. Epstein, A. Stine, J. L. Arevalo, E. Y. Chew, and A. A. Quyyumi. Basic fibroblast growth factor in patients with intermittent claudication: results of a phase I trial. J. Am. Coll. Cardiol. 36:1239–1244, 2000.

    Google Scholar 

  115. Le Huu, A., A. Paul, L. Xu, S. Prakash, and D. Shum-Tim. Recent advancements in tissue engineering for stem cell-based cardiac therapies. Ther. Deliv. 4:503–516, 2013.

    Google Scholar 

  116. Lee, S. H., J. J. Moon, and J. L. West. Three-dimensional micropatterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration. Biomaterials 29:2962–2968, 2008.

    Google Scholar 

  117. Leeper, N. J., A. L. Hunter, and J. P. Cooke. Stem cell therapy for vascular regeneration: adult, embryonic, and induced pluripotent stem cells. Circulation 22:517–526, 2010.

    Google Scholar 

  118. Leeper, N. J., A. L. Hunter, and J. P. Cooke. Stem cell therapy for vascular regeneration: adult, embryonic, and induced pluripotent stem cells. Circulation 122:517–526, 2010.

    Google Scholar 

  119. Leor, J., S. Aboulafia-Etzion, A. Dar, L. Shapiro, I. M. Barbash, A. Battler, T. Granot, and S. Cohen. Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium. Circulation 102:56–61, 2000.

    Google Scholar 

  120. Leor, J., S. Aboulafia-Etzion, A. Dar, L. Shapiro, I. M. Barbash, A. Battler, Y. Granot, and S. Cohen. Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation 102:III56–III61, 2000.

  121. Leor, J., S. Tuvia, V. Guetta, F. Manczur, D. Castel, U. Willenz, O. Petneházy, N. Landa, M. S. Feinberg, E. Konen, O. Goitein, O. Tsur-Gang, M. Shaul, L. Klapper, and S. Cohen. Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in swine. J. Am. Coll. Cardiol. 54:1014–1023, 2009.

    Google Scholar 

  122. Leri, A., J. Kajstura, and P. Anversa. Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology. Circ. Res. 109:941–961, 2011.

    Google Scholar 

  123. Leslie-Barbick, J. E., C. Shen, C. Chen, and J. L. West. Micron-scale spatially patterned, covalently immobilized vascular endothelial growth factor on hydrogels accelerates endothelial tubulogenesis and increases cellular angiogenic responses. Tissue Eng. Part A 17:221–229, 2010.

    Google Scholar 

  124. Leucker, T. M., M. Bienengraeber, M. Muravyeva, I. Baotic, D. Weihrauch, A. K. Brzezinska, D. C. Warltier, J. R. Kersten, and P. F. Pratt, Jr. Endothelial-cardiomyocyte crosstalk enhances pharmacological cardioprotection. J. Mol. Cell. Cardiol. 51:803–811, 2011.

    Google Scholar 

  125. Leung, B., and M. Sefton. A modular tissue engineering construct containing smooth muscle cells and endothelial cells. Ann. Biomed. Eng. 35:2039–2049, 2007.

    Google Scholar 

  126. Levenberg, S., N. F. Huang, E. Lavik, A. B. Rogers, J. Itskovitz-Eldor, and R. Langer. Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. Proc. Natl Acad. Sci. U.S.A. 100:12741–12746, 2003.

    Google Scholar 

  127. Levenberg, S., J. Rouwkema, M. Macdonald, E. S. Garfein, D. S. Kohane, D. C. Darland, R. Marini, C. A. van Blitterswijk, R. C. Mulligan, P. A. D’Amore, and R. Langer. Engineering vascularized skeletal muscle tissue. Nat. Biotechnol. 23:879–884, 2005.

    Google Scholar 

  128. Li, Z., K. D. Wilson, B. Smith, D. L. Kraft, F. Jia, M. Huang, X. Xie, R. C. Robbins, S. S. Gambhir, I. L. Weissman, and J. C. Wu. Functional and transcriptional characterization of human embryonic stem cell-derived endothelial cells for treatment of myocardial infarction. PLoS ONE 2009. doi:10.1371/journal.pone.0008443.

    Google Scholar 

  129. Li, R. K., T. M. Yau, R. D. Weisel, D. A. Mickle, T. Sakai, A. Choi, and Z. Q. Jia. Construction of a bioengineered cardiac graft. J. Thorac. Cardiovasc. Surg. 119:368–375, 2000.

    Google Scholar 

  130. Lim, S. Y., D. Hernández, and G. J. Dusting. Growing vascularized heart tissue from stem cells. J. Cardiovasc. Pharmacol. 62:122–129, 2013.

    Google Scholar 

  131. Lo Vasco, V. R., L. Pacini, T. Di Raimo, D. D’arcangelo, and R. Businaro. Expression of phosphoinositide-specific phospholipase C isoforms in human umbilical vein endothelial cells. J. Clin. Pathol. 64:911–915, 2011.

    Google Scholar 

  132. Lokmic, Z., F. Stillaert, W. A. Morrison, E. W. Thompson, and G. M. Mitchell. An arteriovenous loop in a protected space generates a permanent, highly vascular, tissue-engineered construct. FASEB J. 21:511–522, 2007.

    Google Scholar 

  133. Luikart, S. D., B. Levay-Young, T. Hinkel, J. Shearer, C. Mills, M. D. Caldwell, M. R. Gyetko, and T. R. Oegema. Mactinin treatment promotes wound-healing-associated inflammation in urokinase knockout mice. Wound Repair Regen. 14:123–128, 2006.

    Google Scholar 

  134. Luo, Z. P., Y. L. Sun, T. Fujii, and K. N. An. Single molecule mechanical properties of type II. Biorheology 41:247–254, 2004.

    Google Scholar 

  135. Manning, M. C., K. Patel, and R. T. Borchardt. Stability of protein pharmaceuticals: an update. Pharm. Res. 27:544–575, 2010.

    Google Scholar 

  136. Mao, M., J. He, Y. Liu, X. Li, and D. Li. Icetemplate-induced silk fibroin-chitosan scaffolds with predefined microfluidic channels and fully porous structures. Acta Biomater. 8:2175–2184, 2012.

    Google Scholar 

  137. Marga, F., K. Jakab, C. Khatiwala, B. Shephard, S. Dorfman, B. Hubbard, S. Colbert, and F. Gabor. Toward engineering functional organ modules by additive manufacturing. Biofabrication 2012. doi:10.1088/1758-5082/4/2/022001.

    Google Scholar 

  138. Marra, K. G., A. J. Defail, J. A. Clavijo-Alvarez, S. F. Badylak, A. Taieb, B. Schipper, J. Bennett, and J. P. Rubin. FGF-2 enhances vascularization for adipose tissue engineering. Plast. Reconstr. Surg. 121:1153–1164, 2008.

    Google Scholar 

  139. Martens, T. P., A. F. G. Godier, J. J. Parks, L. Q. Wan, M. S. Koeckert, G. M. Eng, B. I. Hudson, W. Sherman, and G. Vunjak-Novakovic. Percutaneous cell delivery into the heart using hydrogels polymerizing in situ. Cell Transpl. 18:297–304, 2009.

  140. Matsubayashi, K., P. W. Fedak, D. A. Mickle, R. D. Weisel, T. Ozawa, and R. K. Li. Improved left ventricular aneurysm repair with bioengineered vascular smooth muscle grafts. Circulation 108:II219–II225, 2003.

  141. Matsuura, K., T. Nagai, N. Nishigaki, T. Oyama, J. Nishi, H. Wada, M. Sano, H. Toko, H. Akazawa, T. Sato, H. Nakaya, H. Kasanuki, and I. Komuro. Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J. Biol. Chem. 279:11384–11391, 2004.

    Google Scholar 

  142. McGuigan, A. P., and M. V. Sefton. Vascularized organoid engineered by modular assembly enables blood perfusion. Proc. Natl Acad. Sci. 103:1461–1466, 2006.

    Google Scholar 

  143. McGuigan, A. P., and M. V. Sefton. The thrombogenicity of human umbilical vein endothelial cell seeded collagen modules. Biomaterials 29:2453–2463, 2008.

    Google Scholar 

  144. Mehdizadeh, H., S. Sumo, E. S. Bayrak, E. M. Brey, and A. Cinar. Three-dimensional modeling of angiogenesis in porous biomaterial scaffolds. Biomaterials 4:2875–2887, 2013.

    Google Scholar 

  145. Minatoguchi, S., G. Takemura, X. H. Chen, N. Wang, Y. Uno, M. Koda, M. Arai, Y. Misao, C. Lu, K. Suzuki, K. Goto, A. Komada, T. Takahashi, K. Kosai, T. Fujiwara, and H. Fujiwara. Acceleration of the healing process and myocardial regeneration may be important as a mechanism of improvement of cardiac function and remodeling by postinfarction granulocyte colony stimulating factor treatment. Circulation 109:2572–2580, 2004.

    Google Scholar 

  146. Mironov, V., V. Kasyanov, and R. R. Markwald. Organ printing: from bioprinter to organ biofabrication line. Curr. Opin. Biotechnol. 22:667–673, 2011.

    Google Scholar 

  147. Miyagi, Y., L. L. Chiu, M. Cimini, R. D. Weisel, M. Radisic, and R. K. Li. Biodegradable collagen patch with covalently immobilized VEGF for myocardial repair. Biomaterials 32:1280–1290, 2011.

    Google Scholar 

  148. Mohri, T., Y. Fujio, M. Maeda, T. Ito, T. Iwakura, Y. Oshima, Y. Uozumi, M. Segawa, H. Yamamoto, T. Kishimoto, and J. Azum. Leukemia inhibitory factor induces endothelial differentiation in cardiac stem cells. J. Biol. Chem. 281:6442–6447, 2006.

    Google Scholar 

  149. Moldovan, N. I., P. J. Goldschmidt-Clermont, J. Parker-Thornburg, S. D. Shapiro, and P. E. Kolattukudy. Contribution of monocytes/macrophages to compensatory neovascularization: the drilling of metalloelastase-positive tunnels in ischemic myocardium. Circ. Res. 87:378–384, 2000.

    Google Scholar 

  150. Montano, I., C. Schiestl, J. Schneider, L. Pontiggia, J. Luginbuhl, T. Biedermann, S. Böttcher-Haberzeth, E. Braziulis, M. Meuli, and E. Reichmann. Formation of human capillaries in vitro: the engineering of prevascularized matrices. Tissue Eng. Part A 16:269–282, 2010.

    Google Scholar 

  151. Moon, J. J., M. S. Hahn, I. Kim, B. A. Nsiah, and J. L. West. Micropatterning of poly(ethylene glycol) diacrylate hydrogels with biomolecules to regulate and guide endothelial morphogenesis. Tissue Eng. Part A 15:579, 2009.

    Google Scholar 

  152. Morice, M. C., P. W. Serruys, A. P. Kappetein, T. E. Feldman, E. Stahle, A. Colombo, M. J. Mack, D. R. Holmes, L. Torracca, G. A. van Es, K. Leadley, K. D. Dawkins, and F. Mohr. Outcomes in patients with de novo left main disease treated with either percutaneous coronary intervention using paclitaxel-eluting stents or coronary artery bypass graft treatment in the synergy between percutaneous coronary intervention with TAXUS and cardiac surgery (SYNTAX) trial. Circulation 121:2645–2653, 2010.

    Google Scholar 

  153. Morritt, A. N., S. K. Bortolotto, R. J. Dilley, X. Han, A. R. Kompa, and D. McCombe. Cardiac tissue engineering in an in vivo vascularized chamber. Circulation 115:353–360, 2007.

    Google Scholar 

  154. Murphy, W. L., R. G. Dennis, J. L. Kileny, and D. J. Mooney. Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds. Tissue Eng. 8:43–52, 2002.

    Google Scholar 

  155. Musaro, A., C. Giacinti, G. Borsellino, G. Dobrowolny, L. Pelosi, L. Cairns, S. Ottolenghi, G. Cossu, G. Bernardi, L. Battistini, M. Molinaro, and N. Rosenthal. Stem cell-mediated muscle regeneration is enhanced by local isoform of insulin-like growth factor 1. Proc. Natl Acad. Sci. U.S.A. 101:1206–1210, 2004.

    Google Scholar 

  156. Nagai, N., N. Kumasaka, T. Kawashima, H. Kaji, M. Nishizawa, and T. Abe. Preparation and characterization of collagen microspheres for sustained release of VEGF. J. Mater. Sci. Mater. Med. 21:1891–1898, 2010.

    Google Scholar 

  157. Narazaki, G., H. Uosaki, M. Teranishi, K. Okita, B. Kim, S. Matsuoka, S. Yamanaka, and J. K. Yamashita. Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation 18:498–506, 2008.

    Google Scholar 

  158. Nguyen, H., J. J. Qian, R. S. Bhatnagar, and S. Li. Enhanced cell attachment and osteoblastic activity by P-15 peptide-coated matrix in hydrogels. Biochem. Biophys. Res. Commun. 311:179–186, 2003.

    Google Scholar 

  159. Nian, M., P. Lee, N. Khaper, and P. Liu. Inflammatory cytokines and postmyocardial infarction remodeling. Circ. Res. 94:1543–1553, 2004.

    Google Scholar 

  160. Nitenberg, A. Hypertension, endothelial dysfunction and cardiovascular risk. Arch. Mal. Coeur Vaiss. 99:915–921, 2006.

    Google Scholar 

  161. Noireaud, J., and R. Andriantsitohaina. Recent insights in the paracrine modulation of cardiomyocyte contractility by cardiac endothelial cells. Biomed. Res. Int. 2014;2014:doi:10.1155/2014/923805.

  162. Norotte, C., F. S. Marga, L. E. Niklason, and G. Forgacs. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30:5910–5917, 2009.

    Google Scholar 

  163. Novakovic, G. V., N. Tandon, A. Godier, R. Maidhof, A. Marsano, T. P. Martens, and M. Radisic. Challenges in cardiac tissue engineering. Tissue Eng. Part B 16:169–187, 2010.

    Google Scholar 

  164. Oh, H., S. B. Bradfute, T. D. Gallardo, T. Nakamura, V. Gaussin, Y. Mishina, J. Pocius, L. H. Michael, R. R. Behringer, D. J. Garry, M. L. Entman, and M. D. Schneider. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc. Natl Acad. Sci. U.S.A. 100:12313–12318, 2003.

    Google Scholar 

  165. Oh, K. S., J. Y. Song, S. J. Yoon, Y. Park, D. Kim, and S. H. Yuk. Temperature-induced gel formation of core/shell nanoparticles for the regeneration of ischemic heart. J. Control Release 146:207–211, 2010.

    Google Scholar 

  166. Ohtsuka, M., H. Takano, Y. Zou, H. Toko, H. Akazawa, Y. Qin, M. Suzuki, H. Hasegawa, H. Nakaya, and I. Komuro. Cytokine therapy prevents left ventricular remodeling and dysfunction after myocardial infarction through neovascularization. FASEB J. 18:851–853, 2004.

    Google Scholar 

  167. Opie, L. H., P. J. Commerford, B. J. Gersh, and M. A. Pfeffer. Controversies in ventricular remodelling. Lancet 367:356–367, 2006.

    Google Scholar 

  168. Orlic, D., J. Kajstura, S. Chimenti, I. Jakoniuk, S. M. Anderson, B. Li, J. Pickel, R. McKay, B. Nadal-Ginard, D. M. Bodine, A. Leri, and P. Anversa. Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705, 2001.

    Google Scholar 

  169. Orlic, D., J. Kajstura, S. Chimenti, F. Limana, I. Jakoniuk, F. Quaini, B. Nadal-Ginard, D. M. Bodine, A. Leri, and P. Anversa. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc. Natl Acad. Sci. U.S.A. 98:10344–10349, 2001.

    Google Scholar 

  170. Orr, A. W., C. A. Elzie, D. F. Kucik, and J. E. Murphy-Ullrich. Thrombospondin signaling through the alreticulin LDL receptor-related protein co-complex stimulates random and directed cell migration. J. Cell Sci. 116:2917, 2003.

    Google Scholar 

  171. Ozawa, C. R., A. Banfi, N. L. Glazer, G. Thurston, M. L. Springer, P. E. Kraft, D. M. McDonald, and H. M. Blau. Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. J. Clin. Invest. 113:516–527, 2004.

    Google Scholar 

  172. Padin-Iruegas, M. E., Y. Misao, M. E. Davis, V. F. M. Segers, G. Esposito, T. Tokunou, K. Urbanek, T. Hosoda, M. Rota, P. Anversa, A. Leri, R. T. Lee, and J. Kajstura. Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction. Circulation 120:876–887, 2009.

    Google Scholar 

  173. Papadaki, M., N. Bursac, R. Langer, J. Merok, G. Vunjak-Novakovic, and L. E. Freed. Tissue engineering of functional cardiac muscle: molecular, structural, and electrophysiological studies. Am. J. Physiol. Heart Circ. Physiol. 280:H168–H178, 2001.

    Google Scholar 

  174. Park, J. H., B. G. Chung, W. G. Lee, J. Kim, M. D. Brigham, J. Shim, S. Lee, C. M. Hwang, N. G. Durmus, U. Demirci, and A. Khademhosseini. Microporous cell-laden hydrogels for engineered tissue constructs. Biotechnol. Bioeng. 106:138–148, 2010.

    Google Scholar 

  175. Parolari, A., L. L. Pesce, M. Trezzi, C. Loardi, S. Kassem, C. Brambillasca, B. Miguel, E. Tremoli, P. Biglioli, and F. Alamanni. Performance of EuroSCORE in CABG and off-pump coronary artery bypass grafting: single institution experience and meta-analysis. Eur. Heart J. 30:297–304, 2009.

  176. Passier, R., L. W. van Laake, and C. L. Mummery. Stem-cell based therapy and lessons from the heart. Nature 453:322–329, 2008.

    Google Scholar 

  177. Perets, A., Y. Baruch, F. Weisbuch, G. Shoshany, G. Neufeld, and S. Cohen. Enhancing the vascularization of three dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J. Biomed. Mater. Res. A. 65:489, 2003.

    Google Scholar 

  178. Planat-Benard, V., C. Menard, M. Andre, M. Puceat, A. Perez, J. M. Garcia-Verdugo, L. Pénicaud, and L. Casteilla. Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ. Res. 94:223–229, 2004.

    Google Scholar 

  179. Quaini, F., K. Urbanek, A. P. Beltrami, N. Finato, C. A. Beltrami, B. Nadal-Ginard, J. Kajstura, A. Leri, and P. Anversa. Chimerism of the transplanted heart. N. Engl. J. Med. 346:5–15, 2002.

    Google Scholar 

  180. Radisic, M., and V.-N. G. Serbian. Cardiac tissue engineering. J. Chem. Soc. 70:541–556, 2005.

    Google Scholar 

  181. Raghavan, S., C. M. Nelson, J. D. Baranski, E. Lim, and C. S. Chen. Geometrically controlled endothelial tubulogenesis in micropatterned gels. Tissue Eng. Part A 16:2255–2263, 2010.

    Google Scholar 

  182. Rakusan, K., M. F. Flanagan, T. Geva, J. Southern, and R. Van-Praagh. Morphometry of human coronary capillaries during normal growth and the effect of age in left ventricular pressure-overload hypertrophy. Circulation 86:38–46, 1992.

    Google Scholar 

  183. Reis, L. A., L. L. Chiu, Y. Liang, K. Hyunh, A. Momen, and M. Radisic. A peptide-modified chitosan-collagen hydrogel for cardiac cell culture and delivery. Acta Biomater. 8:1022–1036, 2012.

    Google Scholar 

  184. Ren, G. Inflammatory mechanisms in myocardial infarction. Curr. Drug Targets Inflamm. Allergy 2:242–256, 2003.

    Google Scholar 

  185. Richardson, T. P., W. L. Murphy, and D. J. Mooney. Polymeric delivery of proteins and plasmid DNA for tissue engineering and gene therapy. Crit. Rev. Eukaryot. Gene Expr. 11:47–58, 2001.

    Google Scholar 

  186. Richardson, T. P., M. C. Peters, A. B. Ennett, and D. J. Mooney. Polymeric system for dual growth factor delivery. Nat. Biotechnol. 19:1029–1034, 2001.

    Google Scholar 

  187. Ripa, R. S., J. C. Nilsson, Y. Wang, L. Sondergaard, E. Jorgensen, and J. Kastrup. Short- and long-term changes in myocardial function, morphology, edema, and infarct mass after ST-segment elevation myocardial infarction evaluated by serial magnetic resonance imaging. Am. Heart J. 154:929–936, 2007.

    Google Scholar 

  188. Roger, V. L., A. S. Go, D. M. Lloyd-Jones, E. J. Benjamin, J. D. Berry, W. B. Borden, D. M. Bravata, S. Dai, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, S. M. Hailpern, J. A. Heit, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, E. Z. Soliman, P. D. Sorlie, N. Sotoodehnia, T. N. Turan, S. S. Virani, N. D. Wong, D. Woo, and M. B. Turner. Heart disease and stroke statistics-2012 update: a report from the American Heart Association. Circulation 125:e2–e220, 2012.

    Google Scholar 

  189. Rosamond, W., K. Flegal, K. Furie, A. Go, K. Greenlund, N. Haase, S. M. Hailpern, M. Ho, V. Howard, B. Kissela, S. Kittner, D. Lloyd-Jones, M. McDermott, J. Meigs, C. Moy, G. Nichol, C. O’Donnell, V. Roger, P. Sorlie, J. Steinberger, T. Thom, M. Wilson, and Y. Hong. Heart disease and stroke statistics-2008 update: a report from the American Heart Association. Circulation 117:e25–e146, 2008.

    Google Scholar 

  190. Rücker, M., M. W. Laschke, D. Junker, C. Carvalho, A. Schramm, R. Mulhaupt, N. C. Gellrich, and M. D. Menger. Angiogenic and inflammatory response to biodegradable scaffolds in dorsal skinfold chambers of mice. Biomaterials 27:5027–5038, 2006.

    Google Scholar 

  191. Rücker, M., M. W. Laschke, D. Junker, C. Carvalho, F. Tavassol, R. Mülhaupt, N. C. Gellrich, and M. D. Menger. Vascularization and biocompatibility of scaffolds consisting of different calcium phosphate compounds. J. Biomed. Mater. Res. A 86:1002–1011, 2008.

    Google Scholar 

  192. Rufaihah, A. J., N. F. Huang, S. Jame, J. C. Lee, H. N. Nguyen, B. Byers, A. De, J. Okogbaa, M. Rollins, R. Reijo-Pera, S. S. Gambhir, and J. P. Cooke. Endothelial cells derived from human iPSCS increase capillary density and improve perfusion in a mouse model of peripheral arterial disease. Arterioscler. Thromb. Vasc. Biol. 31:e72–e79, 2011.

    Google Scholar 

  193. Rufaihah, A. J., N. F. Huang, J. Kim, J. Herold, K. S. Volz, T. S. Park, J. C. Lee, E. T. Zambidis, R. Reijo-Pera, and J. P. Cooke. Human induced pluripotent stem cell-derived endothelial cells exhibit functional heterogeneity. Am. J. Transl. Res. 5:21–35, 2013.

    Google Scholar 

  194. Ruvinov, E., J. Leor, and S. Cohen. The promotion of myocardial repair by the sequential delivery of IGF-1 and HGF from an injectable alginate biomaterial in a model of acute myocardial infarction. Biomaterials 32:565–578, 2011.

    Google Scholar 

  195. Ryu, J. H., I. K. Kim, S. W. Cho, M. C. Cho, K. K. Hwang, H. Piao, S. H. Lim, Y. S. Hong, C. Y. Choi, K. J. Yoo, and B. S. Kim. Implantation of bone marrow mononuclear cells using injectable fibrin matrix enhances neovascularization in infarcted myocardium. Biomaterials 26:319–326, 2005.

    Google Scholar 

  196. Sadr, N., M. Zhu, T. Osaki, T. Kakegawa, Y. Yang, M. Moretti, J. Fukuda, and A. Khademhosseini. SAM-based cell transfer to photopatterned hydrogels for microengineering vascular- like structures. Biomaterials 32:7479–7490, 2011.

    Google Scholar 

  197. Said, S. S., J. G. Pickering, and K. Mequanint. Advances in growth factor delivery for therapeutic angiogenesis. J. Vasc. Res. 50:35–51, 2013.

    Google Scholar 

  198. Santini, M. P., L. Tsao, L. Monassier, C. Theodoropoulos, J. Carter, E. Lara-Pezzi, E. Slonimsky, E. Salimova, P. Delafontaine, Y. H. Song, M. Bergmann, C. Freund, K. Suzuki, and N. Rosenthal. Enhancing repair of the mammalian heart. Circ. Res. 100:1732–1740, 2007.

    Google Scholar 

  199. Santos, M. I., and R. L. Reis. Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges. Macromol. Biosci. 10:12–27, 2010.

    Google Scholar 

  200. Scott, R. C., J. M. Rosano, Z. Ivanov, B. Wang, P. L. Chong, A. C. Issekutz, D. L. Crabbe, and M. F. Kiani. Targeting VEGF-encapsulated immunoliposomes to MI heart improves vascularity and cardiac function. FASEB J. 23:3361–3367, 2009.

    Google Scholar 

  201. She, M., A. P. McGuigan, and M. V. Sefton. Tissue factor and thrombomodulin expression on endothelial cell-seeded collagen modules for tissue engineering. J. Biomed. Mater. Res. Part A 80:497–504, 2007.

  202. Shepherd, B. R., J. B. Hoying, and S. K. Williams. Microvascular transplantation after acute myocardial infarction. Tissue Eng. 13:2871–2879, 2007.

    Google Scholar 

  203. Shiba, Y., S. Fernandes, W. Z. Zhu, D. Filice, V. Muskheli, J. Kim, N. J. Palpant, J. Gantz, K. W. Moyes, H. Reinecke, B. V. Biber, T. Dardas, J. L. Mignone, A. Izawa, R. Hanna, M. Viswanathan, J. D. Gold, M. I. Kotlikoff, N. Sarvazyan, M. W. Kay, C. E. Murry, and M. A. Laflamme. Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 489:322–325, 2012.

    Google Scholar 

  204. Shimizu, T., H. Sekine, J. Yang, Y. Isoi, M. Yamato, A. Kikuchi, E. Kobayashi, and T. Okano. Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. FASEB J. 20:708–710, 2006.

    Google Scholar 

  205. Shimizu, T., M. Yamato, Y. Isoi, T. Akutsu, T. Setomaru, K. Abe, A. Kikuchi, M. Umezu, and T. Okano. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ. Res. 90:e40, 2002.

    Google Scholar 

  206. Shin, M., O. Ishii, T. Sueda, and J. P. Vacanti. Contractile cardiac grafts using a novel nanofibrous. Biomaterials 25:3717–3723, 2004.

    Google Scholar 

  207. Shin, S. H., J. Lee, K. S. Lim, T. Rhim, S. K. Lee, Y. H. Kim, and K. Y. Lee. Sequential delivery of TAT-HSP27 and VEGF using microsphere/hydrogel hybrid systems for therapeutic angiogenesis. J. Control Release 166:38–45, 2013.

    Google Scholar 

  208. Sieminski, A. L., R. P. Hebbel, and K. J. Gooch. The relative magnitudes of endothelial force generation and matrix stiffness modulate capillary morphogenesis in vitro. Exp. Cell Res. 297:574–584, 2004.

    Google Scholar 

  209. Silvestre, J. S. Pro-angiogenic cell-based therapy for the treatment of ischemic cardiovascular diseases. Thromb. Res. 130:S90–S94, 2012.

    Google Scholar 

  210. Siminiak, T., P. Burchardt, and M. Kurpisz. Postinfarction heart failure: surgical and trans-coronary-venous transplantation of autologous myoblasts. Nat. Clin. Pract. Cardiovasc. Med. 3:S46–S51, 2006.

    Google Scholar 

  211. Singelyn, J. M., J. A. DeQuach, S. B. Seif-Naraghi, R. B. Littlefield, P. J. Schup-Magoffin, and K. L. Christman. Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials 30:5409–5416, 2009.

    Google Scholar 

  212. Smith, R. R., L. Barile, H. C. Cho, M. K. Leppo, J. M. Hare, E. Messina, A. Giacomello, M. R. Abraham, and E. Marban. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115:896–908, 2007.

    Google Scholar 

  213. Sottile, J. Regulation of angiogenesis by extracellular matrix. Biochim. Biophys. Acta 1654:13–22, 2004.

    Google Scholar 

  214. Stevens, K. R., K. L. Kreutziger, S. K. Dupras, F. S. Korte, M. Regnier, V. Muskhelib, M. B. Nourseb, K. Bendixenb, H. Reineckeb, and C. E. Murrya. Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. Proc. Natl Acad. Sci. U.S.A. 106:16568–16573, 2009.

    Google Scholar 

  215. Stevens, K. R., L. Pabon, V. Muskheli, and C. E. Murry. Scaffold-free human cardiac tissue patch created from embryonic stem cells. Tissue Eng. Part A 15:1211–1222, 2009.

    Google Scholar 

  216. Storm, C., J. J. Pastore, F. C. MacKintosh, T. C. Lubensky, and P. A. Janmey. Nonlinear elasticity in biological gels. Nature 435:191–194, 2005.

    Google Scholar 

  217. Sun, Q., E. A. Silva, A. Wang, J. C. Fritton, D. J. Mooney, M. B. Schaffler, P. M. Grossman, and S. Rajagopalan. Sustained release of multiple growth factors from injectable polymeric system as a novel therapeutic approach towards angiogenesis. Pharm. Res. 27:264–271, 2010.

    Google Scholar 

  218. Sunderkotter, C., K. Steinbrink, M. Goebeler, R. Bhardwaj, and C. Sorg. Macrophages and angiogenesis. J. Leukoc. Biol. 55:410–422, 1994.

    Google Scholar 

  219. Takahashi, E., K. Fukuda, S. Miyoshi, M. Murata, T. Kato, M. Ita, T. Tanabe, and S. Ogawa. Leukemia inhibitory factor activates cardiac L-type Ca2+ channels via phosphorylation of serine 1829 in the rabbit Cav 1.2 subunit. Circ. Res. 94:1242–1248, 2004.

    Google Scholar 

  220. Takano, H., M. Ohtsuka, H. Akazawa, H. Toko, M. Harada, H. Hasegawa, T. Nagai, and I. Komuro. Pleiotropic effects of cytokines on acute myocardialinfarction: g-CSF as a novel therapy for acute myocardial infarction. Curr. Pharm. Des. 9:1121–1127, 2003.

    Google Scholar 

  221. Tang, D. W., S. H. Yu, Y. C. Ho, F. L. Mi, P. L. Kuo, and H. W. Sung. Heparinized chitosan/poly(gamma-glutamic acid) nanoparticles for multi-functional delivery of fibroblast growth factor and heparin. Biomaterials 31:9320–9332, 2010.

    Google Scholar 

  222. Tavassol, F., P. Schumann, D. Lindhorst, B. Sinikovic, A. Voss, C. von See, A. Kampmann, K. H. Bormann, C. Carvalho, R. Mülhaupt, Y. Harder, M. W. Laschke, M. D. Menger, N. C. Gellrich, and M. Rücker. Accelerated angiogenic host tissue response to poly(L-lactide-co-glycolide) scaffolds by vitalization with osteoblast-like cells. Tissue Eng. Part A 16:2265–2279, 2010.

    Google Scholar 

  223. Tee, R., Z. Lokmic, W. A. Morrison, and R. J. Dilley. Strategies in cardiac tissue engineering. ANZ J. Surg. 80:683–693, 2010.

    Google Scholar 

  224. Teng, R., J. W. Calvert, N. Sibmooh, B. Piknova, N. Suzuki, J. Sun, K. Martinez, M. Yamamoto, A. N. Schechter, D. J. Lefer, and C. T. Noguchi. Acute erythropoietin cardioprotection is mediated by endothelial response. Basic Res. Cardiol. 106:343–354, 2011.

    Google Scholar 

  225. Tongers, J., D. W. Losordo, and U. Landmesser. Stem and progenitor cell-based therapy in ischaemic heart disease: promise, uncertainties, and challenges. Eur. Heart J. 32:1197–1206, 2011.

    Google Scholar 

  226. Torella, D., M. Rota, D. Nurzynska, E. Musso, A. Monsen, I. Shiraishi, E. Zias, K. Walsh, A. Rosenzweig, M. A. Sussman, K. Urbanek, B. Nadal-Ginard, J. Kajstura, P. Anversa, and A. Leri. Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ. Res. 94:514–524, 2004.

    Google Scholar 

  227. Tremblay, P. L., V. Hudon, F. Berthod, L. Germain, and F. A. Auger. Inosculation of tissue-engineered capillaries with the host’s vasculature in a reconstructed skin transplanted on mice. Am. J. Transpl. 5:1002–1010, 2005.

    Google Scholar 

  228. Unger, R. E., K. Peters, M. Wolf, A. Motta, C. Migliaresi, and C. J. Kirkpatrick. Endothelialization of a non-woven silk fibroin net for use in tissue engineering: growth and gene regulation of human endothelial cells. Biomaterials 25:5137–5146, 2004.

    Google Scholar 

  229. Vailhe, B., D. Vittet, and J. J. Feige. In vitro models of vasculogenesis and angiogenesis. Lab. Invest. 81:439–452, 2001.

    Google Scholar 

  230. Van Bommel, R. J., V. Delgado, M. J. Schalij, and J. J. Bax. Critical appraisal of the use of cardiac resynchronization therapy beyond current guidelines. J. Am. Coll. Cardiol. 56:754–762, 2010.

    Google Scholar 

  231. Van-Wijk, B., A. F. M. Moorman, and M. J. B. van den Hoff. Role of bone morphogenetic proteins in cardiac differentiation. Cardiovasc. Res. 74:244–255, 2007.

    Google Scholar 

  232. Velazquez, E. J., K. L. Lee, M. A. Deja, A. Jain, G. Sopko, A. Marchenko, I. S. Ali, G. Pohost, S. Gradinac, W. T. Abraham, M. Yii, D. Prabhakaran, H. Szwed, P. Ferrazzi, M. C. Petrie, C. M. O’Connor, P. Panchavinnin, L. She, R. O. Bonow, G. R. Rankin, R. H. Jones, and J. L. Rouleau. Coronary artery bypass surgery in patients with left ventricular dysfunction. N. Engl. J. Med. 364:1607–1616, 2011.

    Google Scholar 

  233. Ventre, M., F. Causa, and P. A. Netti. Determinants of cell-material crosstalk at the interface: towards engineering of cell instructive materials. J. R. Soc. Interface 9:2017–2032, 2012.

    Google Scholar 

  234. Volz, K. S., E. Miljan, A. Khoo, and J. P. Cooke. Development of pluripotent stem cells for vascular therapy. Vasc. Pharmacol. 56:288–296, 2012.

    Google Scholar 

  235. Wan, J. B., L. L. Huang, R. Rong, R. Tan, J. Wang, and J. X. Kang. Endogenously decreasing tissue n − 6/n − 3 fatty acid ratio reduces atherosclerotic lesions in apolipoprotein E-deficient mice by inhibiting systemic and vascular inflammation. Arterioscler. Thromb. Vasc. Biol. 30:2487–2494, 2010.

    Google Scholar 

  236. Wang, Z. Z., P. Au, T. Chen, Y. Shao, L. M. Daheron, H. Bai, M. Arzigian, D. Fukumura, R. K. Jain, and D. T. Scadden. Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo. Nat. Biotechnol. 25:317–318, 2007.

    Google Scholar 

  237. Watanabe, K., M. Ueno, D. Kamiya, A. Nishiyama, M. Matsumura, T. Wataya, J. B. Takahashi, S. Nishikawa, K. Muguruma, and Y. Sasai. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat. Biotechnol. 25:681–686, 2007.

    Google Scholar 

  238. Winn, N., A. Paul, A. Musaro, and N. Rosenthal. Insulin-like growth factor isoforms in skeletal muscle aging, regeneration, and disease. Cold Spring Harbor Symp. Quant. Biol. 67:507–518, 2002.

    Google Scholar 

  239. Wu, W., A. DeConinck, and J. A. Lewis. Omnidirectional printing of 3D microvascular networks. Adv. Mater. 23:H178–H183, 2011.

    Google Scholar 

  240. Wu, X., E. Rabkin-Aikawa, K. J. Guleserian, T. E. Perry, Y. Masuda, F. W. Sutherland, F. J. Schoen, J. E. Mayer, Jr, and J. Bischoff. Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells. Am. J. Physiol. Heart Circ. Physiol. 287:H480–H487, 2004.

    Google Scholar 

  241. Xiang, Z., R. L. Liao, M. S. Kelly, and M. Spector. Collagen-gag scaffolds grafted onto myocardial infarcts in a rat model: a delivery vehicle for mesenchymal stem cells. Tissue Eng. 12:2467–2478, 2006.

    Google Scholar 

  242. Xie, J., H. Wang, Y. Wang, F. Ren, W. Yi, K. Zhao, Z. Li, Q. Zhao, Z. Liu, H. Wu, C. Gu, and D. Yi. Induction of angiogenesis by controlled delivery of vascular endothelial growth factor using nanoparticles. Cardiovasc. Ther. 31:e12–e18, 2013.

    Google Scholar 

  243. Yamaguchi, J., K. F. Kusano, O. Masuo, A. Kawamoto, M. Silver, S. Murasawa, M. Bosch-Marce, H. Masuda, D. W. Losordo, J. M. Isner, and T. Asahara. Stromal cell-derived factor-1 effects on exvivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation 107:1322–1328, 2003.

    Google Scholar 

  244. Yamahara, K., and H. Itoh. Potential use of endothelial progenitor cells for regeneration of the vasculature. Ther. Adv. Cardiovasc. Dis. 3:17–27, 2009.

    Google Scholar 

  245. Yamamoto, K., T. Takahashi, T. Asahara, N. Ohura, T. Sokabe, A. Kamiya, and J. Ando. Proliferation, differentiation, and tube formation by endothelial progenitor cells in response to shear stress. J. Appl. Physiol. 95:2081–2088, 2003.

    Google Scholar 

  246. Yang, L., M. H. Soonpaa, E. D. Adler, T. K. Roepke, S. J. Kattman, M. Kennedy, E. Henckaerts, K. Bonham, G. W. Abbott, R. M. Linden, L. J. Field, and G. M. Keller. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell derived population. Nature 453:524–528, 2008.

    Google Scholar 

  247. Zhang, M., D. Methot, V. Poppa, Y. Fujio, K. Walsh, and C. E. Murry. Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J. Mol. Cell. Cardiol. 33:907–921, 2001.

    Google Scholar 

  248. Zhao, W., Q. Han, H. Lin, Y. Gao, W. Sun, Y. Zhao, B. Wang, B. Chen, Z. Xiao, and J. Dai. Improved neovascularisation and wound repair by targeting human basic fibroblast growth factor (bFGF) to fibrin. J. Mol. Med. 86:1127–1138, 2008.

    Google Scholar 

  249. Zimmermann, W. H., I. Melnychenko, and T. Eschenhagen. Engineered heart tissue for regeneration of diseased hearts. Biomaterials 25:1639–1647, 2004.

    Google Scholar 

  250. Zimmermann, W. H., K. Schneiderbanger, P. Schubert, M. Didie, F. Munzel, J. F. Heubach, S. Kostin, W. L. Neuhuber, and T. Eschenhagen. Tissue engineering of a differentiated cardiac muscle construct. Circ Res. 90:223–230, 2002.

  251. Zisch, A. H., M. P. Lutolf, M. Ehrbar, G. P. Raeber, S. C. Rizzi, N. Davies, H. Schmokel, D. Bezuidenhout, V. Djonov, P. Zilla, and J. A. Hubbell. Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. FASEB J. 17:2260–2262, 2003.

    Google Scholar 

  252. Zisch, A. H., M. P. Lutolf, and J. A. Hubbell. Biopolymeric delivery matrices for angiogenic growth factors. Cardiovasc. Pathol. 12:295–310, 2003.

    Google Scholar 

  253. Zou, Y., H. Takano, M. Mizukami, H. Akazawa, Y. Qin, H. Toko, M. Sakamoto, T. Minamino, T. Nagai, and I. Komuro. Leukemia inhibitory factor enhances survival of cardiomyocytes and induces regeneration of myocardium after myocardial infarction. Circulation 108:748–753, 2003.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from the Canadian Institutes of Health Research (CIHR).

Statement of Human Studies

No human studies were carried out by the authors for this article.

Statement of Animal Studies

No animal studies were carried out by the authors for this article.

Conflict of Interest

Mohammad Izadifar, Michael E. Kelly and Xiongbiao Chen declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Izadifar.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izadifar, M., Kelly, M.E. & Chen, X. Engineering Angiogenesis for Myocardial Infarction Repair: Recent Developments, Challenges, and Future Directions. Cardiovasc Eng Tech 5, 281–307 (2014). https://doi.org/10.1007/s13239-014-0193-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-014-0193-7

Keywords

Navigation