Skip to main content
Log in

Comparison of Aortic Flow Patterns Before and After Transcatheter Aortic Valve Implantation

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Little is known of the likely changes in blood flow velocity profiles and aortic wall shear stress (WSS) following transcatheter aortic valve implantation (TAVI). The objective of this study was to investigate the effects of TAVI on flow patterns in the thoracic aorta by using cardiovascular magnetic resonance imaging (CMR) and computational fluid dynamics (CFD). An elderly patient with aortic stenosis was examined using MRI pre- and post-TAVI, and CFD simulations were carried out incorporating MRI-derived patient-specific anatomy and upstream flow conditions. Pre-TAVI velocity profiles demonstrated the highly disturbed turbulent flow and jet impacting the wall of the arch owing to the partial opening of the stenosed aortic valve, with likely pathological effects. In the Post-TAVI aorta, velocity profiles were similar to those of healthy aortas with spatially more uniform WSS and lower turbulence levels, demonstrating the favourable effects of the TAVI procedure in restoring normal aortic flow. This study has shown both the effectiveness of TAVI on an individual patient and the advantage of the combined CMR and CFD method for a comprehensive patient-specific assessment of pre- and post-TAVI aortic flow patterns and WSS over CMR alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Bluestein, D., and S. Einav. Transition to turbulence in pulsatile flow through heart valves—a modified stability approach. ASME J. Biomech. Eng. 116:477–497, 1994.

    Article  Google Scholar 

  2. Bluestein, D., Y. M. Li, and I. B. Krukenkamp. Free emboli formation in the wake of bi-leaflet mechanical heart valves and the effects of implantation techniques. J. Biomech. 35:1533–1540, 2002.

    Article  Google Scholar 

  3. Bluestein, D., E. Rambod, and M. Gharib. Vortex shedding as a mechanism for free emboli formation in mechanical heart valves. ASME J. Biomech. Eng. 122:125–134, 2000.

    Article  Google Scholar 

  4. Bogren, H. G., and M. Buonocore. 4D magnetic resonance velocity mapping of blood flow patterns in the aorta in young vs elderly normal subjects. J. Magn. Reson. Imaging 10:861–869, 1999.

    Article  Google Scholar 

  5. Bonow, R. O., B. A. Carabello, C. Kanu, A. C. de Leon, D. P. Faxon, M. D. Freed, W. H. Gaasch, et al. ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (writing committee to revise the 1998 guidelines for the management of patients with valvular heart disease): developed in collaboration with the society of cardiovascular anesthesiologists: endorsed by the society for cardiovascular angiography and interventions and the society of thoracic surgeons. Circulation 114:84–231, 2006.

    Article  Google Scholar 

  6. Cheng, R., Y. G. Lai, and K. B. Chandran. Three-dimensional fluid–structure interaction simulation of bileaflet mechanical heart valve flow dynamics. Ann. Biomed. Eng. 32:1471–1483, 2004.

    Article  Google Scholar 

  7. Cribier, A., H. Eltchaninoff, A. Bash, N. Borenstein, C. Tron, F. Bauer, G. Derumeaux, et al. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation 106:3006–3008, 2002.

    Article  Google Scholar 

  8. de Hart, J., G. W. M. Peters, P. J. G. Schreurs, and F. P. T. Baaijens. A two dimensional fluid–structure interaction model of the aortic valve. J. Biomech. 33:1079–1088, 2000.

    Article  Google Scholar 

  9. de Hart, J., G. W. M. Peters, P. J. G. Schreurs, and F. P. T. Baaijens. A three dimensional computational analysis of fluid–structure interaction in the aortic valve. J. Biomech. 36:103–112, 2003.

    Article  Google Scholar 

  10. Dumont, K., J. Vierendeels, R. Kaminsky, G. van Nooten, P. Verdonck, and D. Bluestein. Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model. ASME J. Biomech. Eng. 129:558–565, 2007.

    Article  Google Scholar 

  11. Dwyer, H. A., P. B. Matthews, A. Azadani, N. Jaussaud, L. Ge, T. S. Guy, and E. E. Tseng. Computational fluid dynamics simulation of transcatheter aortic valve degeneration. Interact. Cardiovasc. Thorac. Surg. 9:301–308, 2009.

    Article  Google Scholar 

  12. Elefteriades, J. A. Thoracic aortic aneurysm: reading the enemy’s playbook. Curr. Probl. Cardiol. 33:203–277, 2008.

    Article  Google Scholar 

  13. El-Hamamsy, I., and M. H. Yacoub. Cellular and molecular mechanisms of thoracic aortic aneurysms. Nat. Rev. Cardiol. 6:771–786, 2009.

    Article  Google Scholar 

  14. Frydrychowicz, A., A. F. Stalder, M. F. Russe, J. Bock, S. Bauer, A. Harloff, A. Berger, M. Langer, J. Hennig, and M. Markl. Three-dimensional analysis of segmental wall shear stress in the aorta by flow-sensitive four-dimensional-MRI. J. Magn. Reson. Imaging 30:77–84, 2009.

    Article  Google Scholar 

  15. Ge, L., L. P. Dasi, F. Sotiropoulos, and A. P. Yoganathan. Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs viscous stresses. Ann. Biomed. Eng. 36:276–297, 2008.

    Article  Google Scholar 

  16. Gonzales, R. C., and R. E. Woods. Digital Image Processing. Upper Saddle River: Prentice-Hall Inc., 2002.

    Google Scholar 

  17. Hope, T. A., M. Markl, L. Wingstrom, M. T. Alley, D. C. Miller, and R. J. Herfkens. Comparison of flow patterns in ascending aortic aneurysms and volunteers using four-dimensional magnetic resonance velocity mapping. J. Magn. Reson. Imaging 26:1471–1479, 2007.

    Article  Google Scholar 

  18. Huang, Z. J., C. L. Merkle, S. Abdallah, and J. M. Tarbell. Numerical simulation of unsteady laminar flow through a tilting disk heart valve: prediction of vortex shedding. J. Biomech. 27:391–402, 1994.

    Article  Google Scholar 

  19. Hutchinson, B. R., and G. D. Raithby. A multigrid method based on the additive correction strategy. Numer. Heat Transfer. 9:511–537, 1986.

    Google Scholar 

  20. Kilner, P. J., G. Z. Yang, R. H. Mohiaddin, D. N. Firmin, and D. B. Longmore. Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation 88:2235–2247, 1993.

    Google Scholar 

  21. Lai, Y. G., K. B. Chandran, and J. Lemmon. A numerical simulation of mechanical heart valve closure fluid dynamics. J. Biomech. 35:881–892, 2002.

    Article  Google Scholar 

  22. Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 282:2035–2042, 1999.

    Article  Google Scholar 

  23. Menter, F., R. Langtry, and S. Volker. Transition modelling for general purpose CFD codes. Flow Turbul. Combust. 77:277–303, 2006.

    Article  MATH  Google Scholar 

  24. Morbiducci, U., R. Ponzini, G. Rizzo, M. Cadioli, A. Esposito, F. Cobelli, A. Maschio, et al. In vivo quantification of helical blood flow in human aorta by time-resolved three-dimensional cine phase contrast magnetic resonance imaging. Ann. Biomed. Eng. 37:516–531, 2009.

    Article  Google Scholar 

  25. Nerem, R. M., W. A. Seed, and N. B. Wood. An experimental study of the velocity distribution and transition to turbulence in the aorta. J. Fluid Mech. 52:137–160, 1972.

    Article  Google Scholar 

  26. Nkomo, V. T., J. M. Gardin, T. N. Skelton, J. S. Gottdiener, C. G. Scott, and M. Enriquez-Sarano. Burden of valvular heart diseases: a population-based study. Lancet 368:1005–1011, 2006.

    Article  Google Scholar 

  27. Nobili, M., U. Morbiducci, R. Ponzini, C. D. Gaudio, A. Balducci, M. Grigioni, F. M. Montevecchi, and A. Redaelli. Numerical simulation of the dynamics of a bileaflet prosthetic heart valve using a fluid-structure interaction approach. J. Biomech. 41:2539–2550, 2008.

    Article  Google Scholar 

  28. Parker, K. H. Instability in arterial blood flow. In: Cardiovascular Flow Dynamics and Measurements, edited by N. H. C. Hwang, and N. A. Normann. Baltimore: University Park Press, 1977, pp. 633–663.

    Google Scholar 

  29. Peskin, C. S., and D. M. McQueen. Modeling prosthetic heart valves for numerical analysis of blood flow through the heart. J. Comput. Phys. 37:113–132, 1994.

    Article  MathSciNet  Google Scholar 

  30. Stein, P. D., and H. N. Sabbah. Turbulent blood flow in the ascending aorta of humans with normal and diseased aortic valves. Circ. Res. 39:58–65, 1976.

    Google Scholar 

  31. Sun, W., K. Li, and E. Sirois. Simulated elliptical bioprosthetic valve deformation: implications for asymmetric transcatheter valve deployment. J. Biomech. 43:3085–3090, 2010.

    Article  Google Scholar 

  32. Suo, J., J. Oshinski, and D. P. Giddens. Effects of wall motion and compliance on flow patterns in the ascending aorta. ASME J. Biomech. Eng. 125:347–354, 2003.

    Article  Google Scholar 

  33. Tan, F. P. P., A. Borghi, R. H. Mohiaddin, N. B. Wood, S. Thom, and X. Y. Xu. Analysis of flow patterns in a patient-specific thoracic aortic aneurysm model. Comput. Struct. 87:680–690, 2009.

    Article  Google Scholar 

  34. Tan, F. P. P., N. B. Wood, G. Tabor, and X. Y. Xu. Comparison of LES of steady transitional flow in an idealized stenosed axisymmetric artery model with a RANS transitional model. ASME J. Biomech. Eng. 133:051001-1–051001-12, 2011.

    Article  Google Scholar 

  35. Viscardi, F., C. Vergara, C. L. Antiga, S. Merelli, A. Veneziani, G. Puppini, G. Faggian, A. Mazzucco, and G. B. Luciani. Comparative finite element model analysis of ascending aortic flow in bicuspid and tricuspid aortic valve. Artif. Organs. 34:1114–1120, 2010.

    Article  Google Scholar 

  36. Webb, J. G., L. Altwegg, R. Boone, A. Chung, J. Ye, S. Lichtenstein, M. Lee, et al. Transcatheter aortic valve implantation: impact on clinical and valve-related outcomes. Circulation 119:3009–3016, 2009.

    Article  Google Scholar 

  37. Webb, J. G., S. Pasupati, K. Humphries, C. Thompson, L. Altwegg, R. Moss, A. Sinhal, et al. Percutaneous transarterial aortic valve replacement in selected high-risk patients with aortic stenosis. Circulation 116:755–763, 2007.

    Article  Google Scholar 

  38. Weinberg, E. J., and M. R. Mofrad. Transient, three-dimensional, multiscale simulations of the human aortic valve. Cardiovasc. Eng. 7:140–155, 2007.

    Article  Google Scholar 

  39. Weston, M. W., D. V. LaBorde, and A. P. Yoganathan. Estimation of the shear stress on the surface of an aortic valve leaflet. Ann. Biomed. Eng. 27:572–579, 1999.

    Article  Google Scholar 

  40. Wilcox, D. C. Turbulence Modelling for CFD (1st ed.). Glendale: Griffin Printing, 1993.

    Google Scholar 

  41. Wilcox, D. C. Turbulence Modelling for CFD (3rd ed.). La Canada: DCW Industries, 2006.

    Google Scholar 

  42. Yoganathan, A. P., Z. He, and S. C. Jones. Fluid mechanics of heart valves. Ann. Rev. Biomed. Eng. 6:331–362, 2004.

    Article  Google Scholar 

Download references

Acknowledgments

The first author acknowledges funding received from the Foundation for Circulatory Health, International Centre for Circulatory Health, London. RT was supported by the Magdi Yacoub Institute as the Qatar Cardiovascular Research Center Fellow. The work was also supported by the cardiovascular biomedical research unit of Royal Brompton Hospital and Imperial College London.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Y. Xu.

Additional information

Associate Editor W. Robert Taylor oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, F.P.P., Xu, X.Y., Torii, R. et al. Comparison of Aortic Flow Patterns Before and After Transcatheter Aortic Valve Implantation. Cardiovasc Eng Tech 3, 123–135 (2012). https://doi.org/10.1007/s13239-011-0073-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-011-0073-3

Keywords

Navigation