Skip to main content
Log in

Preparation of topographically modified poly(L-lactic acid)-b-Poly(ɛ-caprolactone)-b-poly(L-lactic acid) tri-block copolymer film surfaces and its blood compatibility

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Hindering early platelet adhesion and enhancing human vascular endothelial cell proliferation on surfaces of the foreign materials play a key role in the prevention of coagulation. In order to develop topographically suitable surface for artificial grafts, topographically modified poly(L-lactic acid)-b-poly(ɛ-caprolactone)-b-poly(L-lactic acid) tri-block copolymer (PLLA-PCL-PLLA) film surfaces were cast using a simple solvent-nonsolvent method. PLLA-PCL-PLLA copolymer was synthesized, and was confirmed by 1H nuclear magnetic resonance (NMR) analysis. The molecular weight of the copolymer was measured using gel permeation chromatography (GPC). PLLAPCL-PLLA films were cast with various ratios of non-solvent in the solvent mixture. Tetrahydrofuran (THF) and ethyl alcohol (EtOH) were used as solvent and nonsolvent respectively. The hydrophobic characteristic of the surfaces was confirmed by the water contact angle (WCA). The prepared film surfaces were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). Anti-platelet adhesion characteristic was evaluated using Lactate Dehydrogenase (LDH) assay and SEM images. Proliferation behavior of human vascular endothelial cell was investigated by water-soluble tatrazolium salt (WST) assay after 3 h, 1 day, 2 days and 4 days of cell culture on the film surface. Fabricated morphologically unique surface, which consists of submicron size width and nano size height rough structure, shows anti platelet adhesive ability and relatively higher human vascular endothelial cell proliferation behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Zheng, Z. Wang, L. Song, Q. Zhao, J. Zhang, D. Li, S. Wang, J. Han, X. L. Zheng, Z. Yang, and D. Kong, Biomaterials, 33, 2880 (2012).

    Article  CAS  Google Scholar 

  2. R. Y. Kannan, H. J. Salacinski, K. Sales, P. Butler, and A. M. Seifalian, Biomaterials, 26, 1857 (2005).

    Article  CAS  Google Scholar 

  3. P. Zilla, D. Bezuidenhout, and P. Human, Biomaterials, 28, 5009 (2007).

    Article  CAS  Google Scholar 

  4. D. M. Wootton and D. N. Ku, Annu. Rev. Biomed. Eng., 1, 299 (1999).

    Article  CAS  Google Scholar 

  5. Y. B. Lee, Y. M. Shin, J. H. Lee, I. Jun, J. K. Kang, J. C. Park, and H. Shin, Biomaterials, 33, 8343 (2012).

    Article  CAS  Google Scholar 

  6. L. B. Koh, I. Rodriguez, and S. S. Venkatraman, Biomaterials, 31, 1533 (2010).

    Article  CAS  Google Scholar 

  7. C. Mao, C. Liang, W. Luo, J. Bao, J. Shen, X. Hou, and W. Zhao, J. Mater. Chem., 19, 9025 (2009).

    Article  CAS  Google Scholar 

  8. T. Sun, H. Tan, D. Han, Q. Fu, and L. Jiang, Small, 10, 959 (2005).

    Article  Google Scholar 

  9. J. I. Lim, S. I. Kim, and S. H. Kim, Colloids Surf. B: Biointerfaces, 103, 463 (2013).

    Article  CAS  Google Scholar 

  10. S. I. Kim, J. I. Lim, Y. Jung, C. H. Mun, J. H. Kim, and S. H. Kim, Appl. Surf. Sci., 276, 586 (2013).

    Article  CAS  Google Scholar 

  11. S. I. Kim, J. I. Lim, B. R. Lee, C. H. Mun, Y. Jung, and S. H. Kim, Colloids Surf. B: Biointerfaces, 114, 28 (2013).

    Article  Google Scholar 

  12. M. Lampin, R. Warocquier-Clerout, C. Legris, M. Degrange, and M. F. Sigot-Luizard, J. Biomed. Mater. Res., 36, 99 (1997).

    Article  CAS  Google Scholar 

  13. Q. Huang, L. Lin, Y. Yang, R. Hu, E. A. Vogler, and C. Lin, Biomaterials, 33, 8213 (2012).

    Article  CAS  Google Scholar 

  14. J. Y. Lim, J. C. Hansen, C. A. Siedlecki, R. W. Hengstebeck, J. Cheng, N. Winograd, and H. J. Donahue, Biomacromolecules, 6, 3319 (2005).

    Article  CAS  Google Scholar 

  15. H. L. Khor, Y. Kuan, H. Kukula, K. Tamada, W. Knoll, M. Moeller, and D. W. Hutmacher, Biomacromolecules, 8, 1530 (2007).

    Article  CAS  Google Scholar 

  16. K. Hatano, H. Inoue, T. Kojo, T. Matsunaga, T. Tsujisawa, C. Uchiyama, and Y. Uchida, Bone, 25, 439 (1999).

    Article  CAS  Google Scholar 

  17. P. B. Van Wachem, T. Beugeling, J. Feijen, A. Bantjes, J. P. Detmers, and W. G. Van Aken, Biomaterials, 6, 403 (1985).

    Article  Google Scholar 

  18. D. E. Discher, P. Janmey, and Y. L. Wang, Science, 310, 1139 (2005).

    Article  CAS  Google Scholar 

  19. B. J. Park, B. J. Kwon, J. K. Kang, M. H. Lee, I. Han, J. K. Kim, and J. Park, Macromol. Res., 19, 537 (2011).

    Article  CAS  Google Scholar 

  20. S. Yeon, J. W. Lee, J. Lee, T. Rhim, Y. Kwark, S. H. Kim, and K. Y. Lee, Macromol. Res., 20, 1205 (2012).

    Article  CAS  Google Scholar 

  21. D. Kim, E. A. Lipke, P. Kim, R. Cheong, S. Thompson, M. Delannoy, K. Suh, L. Tung, and A. Levchenko, Proc. Natl. Acad. Sci. U.S.A., 107, 565 (2010).

    Article  CAS  Google Scholar 

  22. A. D. Mel, G. Jell, M. M. Stevens, and A. M. Seifalian, Biomacromolecules, 9, 2969 (2008).

    Article  Google Scholar 

  23. M. Avci-Adali, G. Ziemer, and H. P. Wendel, Biotechnol. Adv., 28, 119 (2010).

    Article  CAS  Google Scholar 

  24. S. Tugulu, P. Silacci, N. Stergiopulos, and H. A. Klok, Biomaterials, 28, 2536 (2007).

    Article  CAS  Google Scholar 

  25. E. S. Place, N. D. Evans, and M. M. Stevens, Nat. Mater., 8, 457 (2009).

    Article  CAS  Google Scholar 

  26. Y. Hong, S. H. Ye, A. Nieponice, L. Soletti, D. A. Vorp, and W. R. Wagner, Biomaterials, 30, 2457 (2009).

    Article  CAS  Google Scholar 

  27. S. Wang, Y. Zhang, H Wang, G. Yin, and Z. Dong, Biomacromolecule, 10, 2240 (2009).

    Article  CAS  Google Scholar 

  28. K. Hassan, S. H. Kim, I. Park, S. H. Lee, S. H. Kim, Y. Jung, S. Kim, and S. H. Kim, Macromol. Res., 19, 122 (2010).

    Article  Google Scholar 

  29. Z. G. Tang, R. A. Black, J. M. Curran, J. A. Hunt, N. P. Rhodes, and D. F. Williams, Biomaterials, 25, 4741 (2004).

    Article  CAS  Google Scholar 

  30. J. Lee, G. Tae, Y. H. Kim, I. S. Park, S. H. Kim, and S. H. Kim, Biomaterials, 29, 1872 (2008).

    Article  CAS  Google Scholar 

  31. K. Garkhal, S. Verma, K. Tokoo, and N. Kumar, J. Biomedical Mater. Res. Part A, 82A, 747 (2007).

    Article  CAS  Google Scholar 

  32. R. Sartoneva, A. M. Haaparanta, T. Lahdes-Vasama, B. Mannerstrom, M. Kellomaki, M. Salomaki, R. Sandor, S. Miettinen, and S. Haimi, J. R. Soc. Interface, DOI: 10.1098/rsif.2012.0458 (2012).

    Google Scholar 

  33. O. Jeon, S. H. Lee, S. H. Kim, Y. M. Lee, and Y. H. Kim, Macromolecules, 36, 5585 (2003).

    Article  CAS  Google Scholar 

  34. M. H. Huang, S. Li, J. Coudane, and M. Vert, Macromol. Chem. Phys., 204, 1994 (2003).

    Article  CAS  Google Scholar 

  35. M. H. Huang, S. Li, and M. Vert, Polymer, 8675 (2004).

    Google Scholar 

  36. X. Lu, C. Zhang, and Y. Han, Macromol. Rapid Commun., 25, 1606 (2004).

    Article  CAS  Google Scholar 

  37. N. Zhao, L. Weng, X. Zhang, Q. Xie, Z. Zhang, and J. Xu, ChemPhysChem, 7, 824 (2006).

    Article  CAS  Google Scholar 

  38. Y. Wang, Z. Liu, B. Han, Z. Sun, J. Zhang, and D. Sun, Adv. Funct. Mater., 15, 655 (2005).

    Article  CAS  Google Scholar 

  39. H. Y. Erbil, A. L. Demirel, Y. Avci, and O. Mert, Science, 299, 1337 (2003).

    Article  Google Scholar 

  40. X. Li, G. Chen, Y. Ma, L. Feng, H. Zhao, L. Jiang, and F. Wang, Polymer, 47, 506 (2006).

    Article  CAS  Google Scholar 

  41. J. Shi, N. M. Alves, and J. F. Mano, Bioinspir. Biomim., 3, 034003 (2008).

    Article  Google Scholar 

  42. W. Song, D. D. Veiga, C. A. Custodio, and J. F. Mano, Adv. Mater., 21, 1830 (2009).

    Article  CAS  Google Scholar 

  43. L. Peponi, I. Navarro-Baena, J. E. Baez, J. M. Kenny, and A. Marcos-Fernandez, Polymer, 53, 4561 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo Hyun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.I., Lee, B.R., Lim, J.I. et al. Preparation of topographically modified poly(L-lactic acid)-b-Poly(ɛ-caprolactone)-b-poly(L-lactic acid) tri-block copolymer film surfaces and its blood compatibility. Macromol. Res. 22, 1229–1237 (2014). https://doi.org/10.1007/s13233-014-2168-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-014-2168-9

Keywords

Navigation