Skip to main content
Log in

Ethanol production from Kinnow mandarin (Citrus reticulata) peels via simultaneous saccharification and fermentation using crude enzyme produced by Aspergillus oryzae and the thermotolerant Pichia kudriavzevii strain

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The aim of this study was to assess the potential of using the crude filtrate extract (CFE) produced by a newly isolated strain of Aspergillus oryzae and fermentation with a novel thermotolerant strain of Pichia kudriavzevii for the production of ethanol from kinnow peel waste (KP) via simultaneous saccharification and fermentation (SSF). High-performance liquid chromatography determination showed that pre-hydrolysis of KP with CFE at 3 cellulase filter paper units/g dry substrate (FPU/g-ds) at 50°C resulted in 24.87 ± 0.75 g l-1 glucose, 21.98 ± 0.53 g l-1 fructose, 10.86 ± 0.34 g l-1 sucrose and 6.56 ± 0.29 g l-1 galacturonic acid (GA) along with insignificant amounts of arabinose, galactose and xylose. Simultaneous saccharification and fermentation of hydrothermally pretreated KP at a substrate concentration of 15% (w v-1) was conducted in a 2.5-l laboratory fermentor with P. kudriavzevii at 40°C after a 3-h pre-hydrolysis. Oligosaccharides were not produced during the SSF process. Ethanol production leveled off after 12 h, resulting in an ethanol concentration and productivity of 33.87 g l-1 and 2.82 g l-1 h-1, respectively. These results demonstrate the potentiality of SSF using crude enzymes and P. kudriavzevii for the scale-up production of ethanol from KP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Banat BMA, Hoshida H, Ano A, Nonklang S, Akada R (2009) High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast. Appl Microbiol Biotechnol 85:861–867

    Article  PubMed  Google Scholar 

  • AOAC (2000) Official methods of analysis, vol. 2, 17th edn. Association of Official Analytical Chemists, Gaithersburg

  • Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270

    Article  CAS  Google Scholar 

  • Banat IM, Nigam P, Singh D, Marchant R, McHale AP (1998) Review: ethanol production at elevated temperatures and alcohol concentrations: Part I—yeasts in general. World J Microbiol Biotechnol 14:809–821

    Article  CAS  Google Scholar 

  • Brijwani K, Oberoi HS, Vadlani PV (2010) Production of a cellulolytic enzyme system in mixed-culture solid state fermentation of soybean hulls supplemented with wheat bran. Process Biochem 45:120–128

    Article  CAS  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  PubMed  CAS  Google Scholar 

  • Dhaliwal SS, Oberoi HS, Sandhu SK, Nanda D, Kumar D, Uppal SK (2011) Enhanced ethanol production from sugarcane juice by galactose adaptation of a newly isolated thermotolerant strain of Pichia kudriavzevii. Bioresour Technol 102:5968–5975

    Article  PubMed  CAS  Google Scholar 

  • Dhillon SS, Gill RK, Gill SS, Singh M (2004) Studies on utilization of citrus peel for pectinase production using fungus Aspergillus niger. Int J Environ Stud 61:199–210

    Article  CAS  Google Scholar 

  • Faga BA, Wilkins MR, Banat IM (2010) Ethanol production through simultaneous saccharification and fermentation of switchgrass using Saccharomyces cerevisiae D5A and thermotolerant Kluyveromyces marxianus IMB strains. Bioresour Technol 101:2273–2279

    Article  PubMed  CAS  Google Scholar 

  • Farrell AE, Pelvin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508

    Article  PubMed  CAS  Google Scholar 

  • Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334–361

    PubMed  CAS  Google Scholar 

  • Ghose TK (1987) Measurement of cellulose activities. Pure Appl Chem 59:257–268

    Article  CAS  Google Scholar 

  • Goering HK, Vansoest PJ (1970) Forage fibre analysis. Agricultural Research Services, United States Department of Agriculture, Agricultural Handbook, No 379. ARS, USDA, Washington D.C.

  • Grohmann K, Elizabeth AB, Busling BS (1994) Production of ethanol from enzymatically hydrolyzed orange peel by the yeast Saccharomyes cerevisiae. Appl Biochem Biotechnol 45/46:315–327

    Article  Google Scholar 

  • Grohmann K, Cameron RG, Buslig BS (1995) Fractionation and pretreatment of orange peel by dilute acid hydrolysis. Bioresour Technol 54:129–141

    Article  CAS  Google Scholar 

  • Grohmann K, Manthey JA, Cameron RG, Buslig BS (1999) Purification of citrus peel juice and molasses. J Agric Food Chem 47:4859–4867

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA 103:11206–11210

    Article  PubMed  CAS  Google Scholar 

  • Kadam KL (1996) Cellulase production. In: Wyman CE (ed) Handbook on bioethanol: production and utilization. Taylor and Francis, Washington D.C., pp 213–252, Chapter 11

    Google Scholar 

  • Kalra KL, Grewal HS, Kahlon SS (1989) Bioconversion of kinnow-mandarin waste into single-cell protein. World J Microbiol Biotech 5:321–326

    Article  CAS  Google Scholar 

  • Kurtzman CP, Smiley MJ, Johnson CJ (1980) Emendation of the genus Issatchenkia kudriavzev and comparison of species by deoxyribonucleic acid reassociation, mating reaction, and ascospore ultrastructure. Int J Sys Bacteriol 30:503–513

    Article  CAS  Google Scholar 

  • Kurtzman CP, Robnett CJ, Basehoar-Powers E (2008) Phylogenetic relationships among species of Pichia, Issatchenkia and Williopsis determined from multigene sequence analysis, and the proposal of Barnettozyma gen.nov., Lindnera gen.nov. and Wickerhamomyces gen.nov. FEMS Yeast Res 8:939–954

    Article  PubMed  CAS  Google Scholar 

  • Limtong S, Sringiew C, Yonganitchai W (2007) Production of fuel ethanol at high temperature from sugarcane juice by new isolated Kluyeromyces marxianus. Bioresour Technol 98:3367–3374

    Article  PubMed  CAS  Google Scholar 

  • Miller GL (1959) Dinitro salicylic acid reagent for determination of reducing sugars. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Oberoi HS, Babbar N, Dhaliwal SS, Kaur S, Vadlani PV, Bhargav VK, Patil RT (2010a) Enhanced oil recovery by pre-treatment of mustard seeds using crude enzyme extract obtained from mixed-culture solid-state fermentation of Kinnow (Citrus reticulata) waste and wheat bran. Food and Bioprocess Technol. doi:10.1007/s11947-010-03830-y

  • Oberoi HS, Vadlani PV, Brijwani K, Bhargav VK, Patil RT (2010b) Enhanced ethanol production via fermentation of rice straw with hydrolysate-adapted Candida tropicalis ATCC 13803. Process Biochem 45:1299–1306

    Article  CAS  Google Scholar 

  • Oberoi HS, Vadlani PV, Madl RL, Saida L, Abeykoon JP (2010c) Ethanol production from orange peels: Two stage hydrolysis and fermentation studies using optimized parameters through experimental design. J Agric Food Chem 58:3422–3429

    Article  PubMed  CAS  Google Scholar 

  • Oberoi HS, Vadlani PV, Nanjundaswamy A, Bansal S, Singh S, Kaur S, Babbar N (2011) Enhanced ethanol production from Kinnow mandarin (Citrus reticulata) waste via a statistically optimized simultaneous saccharification and fermentation process. Bioresour Technol 102:1593–1601

    Article  PubMed  CAS  Google Scholar 

  • Pereira AN, Mobedshahi M, Ladisch MR (1998) Preparation of cellodextrins. Methods Enzymol 160:26–43

    Article  Google Scholar 

  • Sa-Correia I, van Uden N (1982) Temperature profiles of ethanol tolerance: effects of ethanol on the minimum and the maximum for growth of the yeasts Saccharomyces cerevisiae and Kluyveromyces fralilis. Biotechnol Bioeng 25:1665–1667

    Article  Google Scholar 

  • Sharma N, Kalra KL, Oberoi HS, Bansal S (2007) Optimization of fermentation parameters for production of ethanol from kinnow waste and banana peels by simultaneous saccharification and fermentation. Indian J Microbiol 47:310–316

    Article  CAS  Google Scholar 

  • Shen Y, Zhang Y, Bao X, Du F, Zhuang G, Qu Y (2008) Simultaneous saccharification and fermentation of acid-pretreated corncobs with a recombinant Saccharomyces cerevisiae expressing β-glucosidase. Bioresour Technol 99:5099–5103

    Article  PubMed  CAS  Google Scholar 

  • Urbanszki K, Szakacs G, Tengerdy RP (2000) Standardization of filter paper activity assay for solid substrate fermentation. Biotechnol Lett 22:65–69

    Article  CAS  Google Scholar 

  • Wang G, Michailides TJ, Bostock RM (1997) Improved detection of polygalacturonase activity due to Mucor piriformis with a modified dinitrosalicylic acid reagent. Phytopathology 87:161–163

    Article  PubMed  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

  • Wilkins MR, Suryawati L, Maness NO, Churz D (2007a) Ethanol production by Saccharomyces cerevisiae and Kluyveromyces marxianus in the presence of orange-peel oil. World J Microbiol Biotech 23(8):1161–1168

    Article  CAS  Google Scholar 

  • Wilkins MR, Widmer W, Grohmann K (2007b) Simultaneous saccharification and fermentation of citrus peel waste by Saccharomyces cerevisiae to produce ethanol. Process Biochem 42(12):1614–1619

    Article  CAS  Google Scholar 

  • Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Methods Enzymol Biomass Part A Cellulose Hemicellulose 160:87–112

    Article  CAS  Google Scholar 

  • Zhou W, Widmer W, Grohmann K (2008) Developments in ethanol production from citrus peel waste. Proc Fla State Hortic Soc 121:307–310

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial assistance received under AMAAS project of Indian Council of Agricultural Research (ICAR), Government of India for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harinder Singh Oberoi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur Sandhu, S., Singh Oberoi, H., Singh Dhaliwal, S. et al. Ethanol production from Kinnow mandarin (Citrus reticulata) peels via simultaneous saccharification and fermentation using crude enzyme produced by Aspergillus oryzae and the thermotolerant Pichia kudriavzevii strain. Ann Microbiol 62, 655–666 (2012). https://doi.org/10.1007/s13213-011-0302-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-011-0302-x

Keywords

Navigation