Skip to main content
Log in

Intra-specific variability for salinity tolerance in Indian Mucuna pruriens L. (DC.) germplasm

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Mucuna pruriens L. (DC.) is a tropical legume cover crop with important agronomic and medicinal uses. Assessment of intra-specific variability for salt tolerance can aid its introduction in salinity affected areas. This paper reports first study on germplasm screening for variability in this trait among 35 accessions evaluated using nine indicative parameters. The experiments carried out under controlled condition revealed different levels of tolerance for the selected growth (3), physiological (2), and biochemical (2) characters - of which the first two provided reliable indicators for large-scale screening. Overlaying this data with diversity estimates from the AFLP analysis revealed 19 genetically divergent (> 90%) parental combinations that are useful for breeding as well as genetic mapping of this trait. Thus, this investigation opens-up new prospects for genetic improvement of M. pruriens to resourcefully recover them for coastal agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Samed HM, Azooz MM. 2002. Salt tolerance of maize cultivars. Bull. Fac. Sci. Assiut. Univ. 31: 263–269

    Google Scholar 

  • Abraham E, Rigo G, Szekely G, Nagy R, Koncz C, Szabados L. 2003. Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol. Biol. 51: 363–372

    Article  CAS  PubMed  Google Scholar 

  • Akram M, Malik MA, Ashraf MY, Saleem MF, Hussain M. 2007. Competitive seedling growth and K+/Na+ ratio in different maize (Zea mays L.) hybrids under salinity stress. Pak. J. Bot. 39: 2553–2563

    Google Scholar 

  • Ambede JG, Netondo GW, Mwai GN, Musyimi DM. 2012. NaCl salinity affects germination, growth, physiology, and biochemistry of bambara groundnut. Braz. Soc. Plant Physiol. 24: 151–160

    Article  CAS  Google Scholar 

  • Arnon DI. 1949. Copper enzyme in isolated chloroplasts.I. polyphenol oxidase in Beta vulgaris L. Plant Physiol. 24: 1–15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arora NK, Kang SC, Maheshwari DK. 2001. Isolation of siderophore producing strains of Rhizobium meliloti and their bio-control potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr. Sci. 81: 673–677

    Google Scholar 

  • Ashraf M, McNeilly T, Bradshaw AD. 1989. The potential for evolution of tolerance to NaCl, CaCl2, MgCl2 and seawater in four grass species. New Phytol. 112: 245–254

    Article  CAS  Google Scholar 

  • Ashraf MY, Azmi AR, Khan AH, Ala SA. 1994. Effect of water stress on total phenol, peroxidase activity and chlorophyll contents in wheat (Triticum aestivum L). Acta Physio. Plant. 16: 185–191

    CAS  Google Scholar 

  • Ashraf MY, Akhtar K, Sarwar G, Ashraf M. 2005. Role of rooting system in salt tolerance potential of different guar accessions, Agronomy for Sustainable Development. 25: 243–249

    Article  Google Scholar 

  • Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39: 205–207

    Article  CAS  Google Scholar 

  • Bressani R. 2002. Factors influencing nutritive value in food grain legumes: Mucuna compared to other grain legumes. In BM Flores, M Eilitta, R Myhrman, LB Carew, RJ Carsky, eds, Food and Feed from Mucuna: Current Uses and the Way Forward, Workshop, CIDICCO, CIEPCA and World Hunger Research Center, Tegucigalpa, Honduras, pp 164–188

    Google Scholar 

  • Bruggeman A, Hamdy A, Karajeh F, Oweis T, Touchan H. 2003. In vitro salinity tolerance screening of some legumes and forage cultivars. Options Méditerranéennes: Série B. Etudes et Recherches. 44: 163–169

    Google Scholar 

  • Brugnoli EM, Lauteri EM. 1991. Effect of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt tolerant (Gossypium hirsutum L) and salt-sensitive (Phaseolus vulgaris L.) C3 non-halophytes. Plant Physiol. 95: 628–635

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Buckles D. 1995. Velvetbean: A “new” plant with a history. Econ. Bot. 49: 13–25

    Article  Google Scholar 

  • Carsky RJ, Ndikawa R. 1998. Identification of cover crops for the semi-arid savanna zone of West Africa. In D Buckles, A Eteka, M Osiname, M Galiba, G Galiano, eds, Cover Crops in West Africa -Contributing to Sustainable Agriculture. IDRC, IITA, Sasakawa Global 2000. Otawa, Canada, Ibadan, Nigeria, Cotonou, Benin. pp 179–187

    Google Scholar 

  • Cokkizgin A. 2012. Salinity stress in common bean (Phaseolus vulgaris L.) seed germination. Not. Bot. Hort. Agrobo. 40: 177–182

    CAS  Google Scholar 

  • Colmer TD, Epstein E, Dvorak J. 1995. Differential solute regulation in leaf blades of various ages in salt sensitive wheat and a salt-tolerant wheat x Lophopyrum elongatum (Host.) A. Love amphiploid, Plant Physiol. 108: 1715. 1724

    Google Scholar 

  • Cordovilla MD, Ligero F, Lluch C. 1999. Effect of salinity on growth, nodulation and nitrogen assimilation in nodules of faba bean (Vicia faba L. Appl. Soil Ecol. 1: 1–7

    Article  Google Scholar 

  • Dave DS, Patel NK. 2011. Salinity effect on Amaranthus lividus Linn. (Amaranthaceae) in relation of physiological and biochemical aspects. Life Sci. Leaflets 21: 1018–1042

    Google Scholar 

  • Deshwal VK, Singh SB, Kumar P, Chubey A. 2013. Rhizobia unique plant growth promoting Rhizobacteria: A review. Int. J. Life Sci. 2: 74–86

    Google Scholar 

  • Doyle JJ, Luckow MA. 2003. The rest of the iceberg: Legume diversity and evolution in a phylogenetic context. Plant Physiol. 131: 900–910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eilitta M, Bressani R, Carew LB, Carsky RJ, Flores M, Gilbert R, Huyck L, St. Laurent L, Szabo NJ. 2002. Mucuna as a food and feed crop: An overview. In BM Flores, M Eilitta, R Myhrman, LB Carew, RJ Carsky, eds, Food and Feed from Mucuna: Current Uses and the Way Forward, Workshop, CIDICCO, CIEPCA and World Hunger Research Center, Tegucigalpa, Honduras (April 26-29, 2000. pp 18–47

    Google Scholar 

  • Farooqi AA, Khan MM, Asundhara M. 1999. Production technology of medicinal and aromatic crops. Natural Remedies Pvt. Ltd., Bangalore, India. pp 26–28

    Google Scholar 

  • Flowers TJ, Hajibagheri M. 2001. Salinity tolerance in Hordeum vulgare: concentration in root cell of cultivars differing in salt tolerance. Plant Soil 231: 1–9

    Article  CAS  Google Scholar 

  • Gadallah MAA. 1999. Effects of proline and glycinebetaine on Vicia faba responses to salt stress. Biol. Plant. 42: 249–257

    Article  CAS  Google Scholar 

  • Gandour G. 2002. Effect of salinity on development and production of chickpea accessions. PhD Thesis. Aleppo University, Faculty of Agriculture, Aleppo, Syria.

    Google Scholar 

  • Gorham J, Wyn Jones RG, Bristol A. 1990. Partial characterization of the trait for enhanced K+-Na+ discrimination in the D genome of wheat. Planta 180: 590–597

    Article  CAS  PubMed  Google Scholar 

  • Grattan SR, Maas EV. 1988. Effect of salinity on phosphate accumulation and injury in soybeanII. Role of substrate Cl and Na. Plant Soil 109: 65–71

    Article  CAS  Google Scholar 

  • Horie T, Ichirou K, Maki K. 2012. Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants. Rice 5: 11

    Article  Google Scholar 

  • IAB. 2000. Indian Agriculture in Brief. (27th edition. Agriculture Statistics Division, Ministry of Agriculture, Govt. of India, New Delhi

    Google Scholar 

  • Jaccard P. 1908. Nouvelles recherches sur la distribution flo rale. Bull. Soc. Vaud. Sci. Nat. 44: 223–270

    Google Scholar 

  • Jorge MA, Eilitta M, Proud FJ, Maasdorp B, Beksissa VH, Sarial AK, Hanson J. 2007. Mucuna species: recent advances in application of biotechnology. Fruit Veg. Cer. Sci. Biotech. 2: 80–94

    Google Scholar 

  • Katerji N, Van Hoorn JW, Hamdy A, Mastrorilli M, Oweis T, Malhotra RS. 2001b. Response to soil salinity of two chickpea varieties differing in drought tolerance. Agr. Water Manage. 50: 83–96

    Article  Google Scholar 

  • Kapoor K, Srivastava A. 2010. Assessment of salinity tolerance of Vigna mungo var. Pu-19 using ex vitro and in vitro methods. Asian J. Biotech. 2: 73–85

    Article  Google Scholar 

  • Khan MG, Silberbush M, Lips SH. 1994. Physiological studies on salinity and nitrogen interaction in alfalfa II: photosynthesis and transpiration. J. Plant Nutr. 17: 669–682

    Article  Google Scholar 

  • Kramer PJ. 1983. Water Relation of Plants. Academic Press Inc. CA, pp 16

    Google Scholar 

  • Levetin E, McMahon K. 2003. “13-“Legumes”“ Plants and Society 3rd. Ed. New York: McGraw-Hill. pp 207–219

    Google Scholar 

  • Lutts S, Majerus V, Kinet JM. 1999. NaCl effects on proline metabolism in rice (Oryza sativa) seedlings, Physiol. Plant 105: 450–458

    Article  CAS  Google Scholar 

  • Madan S, Nainawatee HS, Jain RK, Chowdhury JB. 1995. Proline and proline metabolizing enzymes in in vitro selected NaCl-tolerant Brassica juncea Lunder salt stress. Ann. Bot. 76: 51–57

    Article  CAS  Google Scholar 

  • Maggio S, Miyazaki P, Veronese T, Fujita JI, Ibeas Damsz B, Narasimhan ML, Hasegawa PM, Joly RJ, Bressani RA. 2002. Does proline accumulation play an active role in stress induced growth reduction? Plant J. 31: 699–712

    Article  CAS  PubMed  Google Scholar 

  • Mahesh S, Sathyanarayana N. 2011. Identification of contrasting genotypes for Fusarium wilt disease in M. pruriens germplasm through combined in vitro screening and AFLP analysis. electronic J. Plant Breed. 2: 510–519

    Google Scholar 

  • Mansour MMF. 1998. Protection of plasma membrane of onion epidermal cells by glycinebetaine and proline against NaCl stress, Plant Physiol. Biochem. 36: 767–772

    Article  CAS  Google Scholar 

  • Miller OR. 1998. Nitric-perchloric acid wet digestion in an open vessel. In YP Kalra, ed, Handbook of Reference Methods for Plant Analysis. CRC Press, ISBN, 1-57444-1248

    Google Scholar 

  • Misra AK, Dave N. 2013. Impact of soil salinity and erosion and its overall impact on India. Int. J. Inn. Res. Engg. Sci. 3: 12–17

    Google Scholar 

  • Moftah AB, Michel BB. 1987. The effect of sodium chloride on solute potential and proline accumulation in soybean leaves. Plant Physiol. 83: 283–286

    Article  Google Scholar 

  • Munns R, Hussain S, Rivelli AR, James RA, Condon AG, Lindsay MP, Lagudah ES, Schachtman DP, Hare RA. 2002. Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. Plant Soil 247: 93–105

    Article  CAS  Google Scholar 

  • Nabizadeh E, Jalilnejad N, Armakani M. 2011. Effect of salinity on growth and nitrogen fixation of Alfalfa (Medicago sativa). World Appl. Sci. J. 13: 1895–1900

    CAS  Google Scholar 

  • Neto ADA, Prisco JT, Enéas-Filho J, de Lacerda CF, Silva JV, da Costa PHA, Gomes-Filho E. 2004. Effects of salt stress on plant growth, stomatal response and solute accumulation of different maize accessions. Braz. J. Plant Physiol. 16: 31–38

    Google Scholar 

  • Petrusa LM, Winicov I. 1997. Proline status in salt tolerant and salt sensitive alfalfa cell lines and plants in response to NaCl. Plant Physiol. Biochem. 35: 303–310

    CAS  Google Scholar 

  • Qadir M, Tubeileh A, Akhtar J, Larbi A, Minhas PS, Khan MA. 2008. Productivity enhancement of salt-affected environments through crop diversification. Land Degrad. Develop. 19: 429–453

    Article  Google Scholar 

  • Qasim M, Ashraf M, Amir Jamil M, Ashraf MY, Shafiq-urRehman ESR. 2003. Water relations and leaf gas exchange properties in some elite canola (Brassica napus) lines under salt stress. Annals App. Biol. 142: 307–316

    Article  Google Scholar 

  • Rani R, Gautam YK, Tomar V, Vimala Y. 2012. Physicochemical markers of salt stress in Mucuna pruriens seedlings. Vegetos 25: 134–137

    Google Scholar 

  • Rohlf FJ. 2009. NTSYS-pc Numerical Taxonomy System version 2. 21c. Exeter software, Setauket, New York

    Google Scholar 

  • SAS Institute Inc. 2012. Using JMP 10. Cary, NC: SAS Institute Inc.

  • Sathyanarayana N, Leelambika M, Mahesh S Mahammad Jaheer. 2011. AFLP assessment of genetic diversity among Indian Mucuna accessions. Physiol. Mol. Bio. Plants. 17: 171–180

    Article  CAS  Google Scholar 

  • Shannon MC. 1986. New insights in plant breeding efforts for improved salt tolerance. Hort. Technol. 6: 96–99

    Google Scholar 

  • Siddhuraju P, Becker K, Makkar HP. 2000. Studies on the nutritional composition and antinutritional factors of three different germplasm seed materials of an under-utilized tropical legume, Mucuna pruriens var. utilis. J. Agri. Food. Chem. 48: 6048–6060

    Article  CAS  Google Scholar 

  • Singh KN, Chatrath R. 2001. Salinity tolerance. In MP Reynolds, JJ Ortiz-Monasterio, A McNab, eds, Application of physiology in wheat breeding. CIMMYT: Mexico. pp 101–110

    Google Scholar 

  • Sokal R, Michener C. 1958. A statistical method for evaluating statistical relationships. Kans. Univ. Sci. Bull. 38: 1409–1438

    Google Scholar 

  • Sudha M, Anusuya P, Mahadev NG, Karthikeyan A, Nagarajan P, Raveendran M, Balasubramanian P. 2013. Molecular studies on mungbean (Vigna radiate (L.) Wilczek) and rice bean (Vigna umbellata (Thunb.)) interspecific hybridization for Mungbean yellow mosaic virus resistance and development of species-specific SCAR marker for rice bean. Arch. Phytopathol, Plant Prot. 46: 503–517

    Article  CAS  Google Scholar 

  • Suriyan C, Charlie BB, Thapanee S, Chalermpol K. 2013. Physiomorphological changes of cowpea (Vigna unguiculata Walp.) and jack bean (Canavalia ensiformis (L.) DC.) in responses to soil salinity. Aust. J Crop Sci. 7:2128–2135

    Google Scholar 

  • Tal M, Katz A, Heiken H, Dehan K. 1979. Salt tolerance in the wild relatives of the cultivated tomato: proline accumulation in Lycopersicon esculentum Mill.L. peruvianum Mill, and Solanum pennellii Cor. treated with NaCl and polyethylene glycol. New Phytol. 82: 349–360

    Article  CAS  Google Scholar 

  • Tarawali G, Manyong VM, Carsky RJ, Vissoh PV, Osei Bonsu P, Galiba M. 1999. Adoption of improved fallows in West Africa: Lessons from Mucuna and Stylo case studies. Agroforestry Syst. 47: 93–122

    Article  Google Scholar 

  • Wignarajah K. 1990. Growth response of Phaseolus vulgaris to varying salinity regimes. Environ. Exp. Bot. 2: 141–147

    Article  Google Scholar 

  • XLSTAT. 2010. Addinsoft USA, New York

    Google Scholar 

  • Yamasaki S, Dillenburg LC. 1999. Measurements of leaf relative water content in Araucaria angustifolia. R. Bras. Fisiol. Veg. 11: 69–75

    Google Scholar 

  • Yap VI, Nelson RJ. 1996. WINBOOT-A Program for Performing Bootstrap Analysis of Binary Data to Determine the Confidence Limits of UPGMA-Based Dendrograms.-IRRI Discussion paper series No. 14, Manila, Philippines, International Rice Research Institute

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sathyanarayana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahesh, S., Sathyanarayana, N. Intra-specific variability for salinity tolerance in Indian Mucuna pruriens L. (DC.) germplasm. J. Crop Sci. Biotechnol. 18, 181–194 (2015). https://doi.org/10.1007/s12892-015-0019-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-015-0019-7

Keywords

Navigation