Skip to main content
Log in

Mining of gene-based SNPs from publicly available ESTs and their conversion to cost-effective genotyping assay in sorghum [Sorghum bicolor (L.) Moench]

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Single Nucleotide Polymorphisms (SNPs) are the commonest type of nucleotide variation distributed throughout the genome and have enormous potential to saturate genetic maps. However, their identification is constrained by the huge investment required for their detection. In this study, we used publicly available EST (Expressed Sequence Tag) sequences to identify SNPs in Sorghum bicolor. A total of 12,421 putative SNPs were identified from 2,921 contiguous transcripts leading to an average SNP interval of one putative SNP for every 275.26 bp. The proportion of transition type mutations (0.598) was larger than transversion types conforming to biological expectations. In order to demonstrate the utility of the SNPs for development of markers with relatively cheap assays, we experimentally validated SNPs using Single Strand Conformation Polymorphism (SSCP) technique in sorghum accessions, which are used as parents for development mapping populations. Genotyping these parents of mapping populations with SSCP markers showed up to 33% polymorphism in the markers suggesting that the SNPs can be used as potential resource for S. bicolor crop improvement programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batley J, Baker G, O’Sullivan Edwards KJ, Edwards D. 2003. Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data. Plant Physiol. 132:84–91

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Buetow KH, Edmonson MN, Cassidy AB. 1999. Reliable identification of large numbers of candidate SNPs from public EST data. Nat. Genet. 21: 323–325

    Article  PubMed  CAS  Google Scholar 

  • Ching A, Katherine SC, Mark J, Maurine D, Oscar S, Scott T, Michele M, Anthony JR. 2002. SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet. 3: 19–32

    Article  PubMed  PubMed Central  Google Scholar 

  • Coles ND, Coleman CE, Christensen SA, Jellen EN, Stevens MR, Bonifacio A, Rojas-Beltran JA, Fairbanks DJ, Maughan PJ. 2005. Development and use of an expressed sequenced tag library in quinoa (Chenopodium quinoa Willd.) for the discovery of single nucleotide polymorphisms. Plant Sci. 168: 439–447

    Article  CAS  Google Scholar 

  • Duran C, Appleby N, Vardy M, Imelfort M, Edwards D, Batley J. 2009. Single nucleotide polymorphism discovery in barley using autoSNPdb. Plant Biotechnol. J. 7: 326–333

    Article  PubMed  CAS  Google Scholar 

  • Edwards NJ. 2007. Novel peptide identification from tandem mass spectra using ESTs and sequence database compression. Mol. Syst. Biol. 3: 102

    PubMed  PubMed Central  Google Scholar 

  • Eujayl I, Sorrells M, Baum M, Wolters P, Powell W. 2001. Assessment of genotypic variation among cultivated durum wheat based on EST-SSRS and genomic SSRs. Euphytica. 119: 39–43

    Article  CAS  Google Scholar 

  • Gu Z, Hillier L, Kwok PY. 1998. Single nucleotide polymorphism hunting in cyberspace. Hum. Mutat. 12: 221–225

    Article  PubMed  CAS  Google Scholar 

  • Hawken RJ, Wesley CB, Sean M, Brian PD. 2004. An interactive bovine in silico SNP database (IBISS). Mammalian genome. 15: 819–827

    Article  PubMed  CAS  Google Scholar 

  • Holliday R, Grigg, GW. 1993. DNA methylation and mutation. Mutat. Res. 285: 61–67

    Article  PubMed  CAS  Google Scholar 

  • Hu G, Modreck B, Stensland HM, Saarela J, Pajukanta P, Kustanovich V, Peltonen L, Nelson SF, Lee C. 2002. Efficient discovery of single-nucleotide polymorphisms in coding regions of human genes. Pharmacogenomics J. 2: 236–242

    Article  PubMed  CAS  Google Scholar 

  • Irizarry K, Kustanovich V, Li C, Brown N, Nelson S, Wong W, Lee CJ. 2000. Genome-wide analysis of singlenucleotide polymorphisms in human expressed sequences. Nat. Genet. 26:233–236

    Article  PubMed  CAS  Google Scholar 

  • Kota R, Rudd S, Facius A, Kolesov G, Thiel T, Zhang H, Stein N, Mayer K, Graner A. 2003. Snipping polymorphisms from large EST collections in barley (Hordeum vulgare L.). Mol. Genet. Genomics. 270: 24–33

    Article  PubMed  CAS  Google Scholar 

  • Krishna TG, Jawali N. 1997. DNA isolation from single or half seeds suitable for random amplified polymorphic DNA analyses. Anal. Biochem. 250: 125–127

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Crapez E, Bazin H, Chevalier J, Trinquet E, Grenier J, Mathis G. 2005. A separation-free assay for the detection of mutations: combination of homogeneous time-resolved fluorescence and minisequencing. Hum. Mutat. 25: 468–475

    Article  PubMed  CAS  Google Scholar 

  • Orita M, Suzuki Y, Sekiya T, Hayashi K. 1989. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics. 5: 874–879

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH. 2008. Genomics of Sorghum. Intl. J. Plant Genomics. Article ID 362451

    Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, et al. 2009. The Sorghum bicolor genome and the diversification of grasses. Nature. 457: 551–556

    Article  PubMed  CAS  Google Scholar 

  • Picoult-Newberg L, Ideker TE, Pohl MG, Taylor SL, Donaldson MA, Nickerson DA, Boyce-Jacino M. 1999. Mining SNPs from EST databases. Genome Res. 9: 167–174

    PubMed  CAS  PubMed Central  Google Scholar 

  • Somers DJ, Kirkpatrick R, Moniwa M, Walsh A. 2003. Mining single-nucleotide polymorphisms from hexaploid wheat ESTs. Genome. 46: 431–437

    Article  PubMed  CAS  Google Scholar 

  • Stone RT, Grosse WM, Casas E, Smith TP, Keele JW, Bennett GL. 2002. Use of bovine EST data and human genomic sequences to map 100 gene-specific bovine markers. Mammalian Genome. 13: 211–215

    Article  PubMed  CAS  Google Scholar 

  • Thiel T, Kota R, Grosse I, Stein N, Graner A. 2004. SNP2CAPS: a SNP and INDEL analysis tool for CAPS marker development. Nucl. Acids Res. 32: e5

    Article  Google Scholar 

  • Tsang S, Sun Z, Luke B, Stewart C, Lum N, et al. 2005. A comprehensive SNP-based genetic analysis of inbred mouse strains. Mammalian Genome. 16: 476–480

    Article  PubMed  CAS  Google Scholar 

  • Vogel C, Chothia C. 2006. Protein family expansions and biological complexity. PLoS Computational Biol. 2: e48

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bashasab Fakrudin.

Additional information

Source: A total of 185,593 EST sequences were retrieved from FTP site of Sorghum bicolor NCBI UniGene database (ftp://ftp.ncbi.nih.gov/repository/UniGene/Sorghum_bicolor/)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girma, Y., Doddamani, D., Fakrudin, B. et al. Mining of gene-based SNPs from publicly available ESTs and their conversion to cost-effective genotyping assay in sorghum [Sorghum bicolor (L.) Moench]. J. Crop Sci. Biotechnol. 17, 155–160 (2014). https://doi.org/10.1007/s12892-014-0022-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-014-0022-4

Key words

Navigation