Skip to main content
Log in

The Evaluation of BMAA Inhalation as a Potential Exposure Route Using a rat Model

  • ORIGINAL ARTICLE
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Chronic inhalation of aerosolized β-N-methylamino-L-alanine (BMAA) could serve as potenital route for exposure to this cyanobacterial neurotoxin implicated in the development of neurodegenerative disease. We investigated environmental aerosol BMAA loads and the fate of inhaled isotopically labeled aerosolized BMAA in adult male Sprague Dawley rats, with doses corresponding to chronic aerosolized environmental BMAA exposure of over 65 days and up to 266 years. Environmental BMAA aerosol concentrations ranged from 6–39 pg L¯1. No clinical signs of toxicity were observed in rats exposed to aerosol containing BMAA at concentrations far exceeding the maximum recorded environmental BMAA aerosol load. Surprisingly, no labeled BMAA was observed in the brain, liver or lung tissues of exposed rats. However, a dose-dependent reduction in the Gln:Glu ratio was observed in brain and liver tissues together with an increase in 2,3 diaminopropanoic acid,15N2, the demethylated L-BMAA-4,4,4-d3,15N2 product, in liver tissues. This confirmed both BMAA uptake and distribution throughout the body. The increase in 2,3 diaminopropanoic acid,15N2 did however not account for the total loss of administered L-BMAA-4,4,4-d3,15N2 and thus, the absence of detectable L-BMAA-4,4,4-d3,15N2 in tissues and feces, together with the absence of other known BMAA catabolites, N-acetylated BMAA and methylamine, additional metabolic reactions are indicated. Significant biochemical responses to BMAA were only observed in doses corresponding to an unrealistic chronic exposure timeframe, suggesting that the inhalation of environmental levels of aerosolized BMAA might not be sufficient to elicit a biochemical response in adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Al-Sammak MA, Hoagland KD, Cassada D, Snow DD (2014) Co-occurrence of the cyanotoxins BMAA, DABA and Anatoxin-a in Nebraska reservoirs, fish and aquatic plants. Toxins (Basel) 6(2):488–508

    Article  CAS  Google Scholar 

  • Backer LC, McNeel SV, Barber T, Kirkpatrick B, Williams C, Irvin M, Zhou Y, Johnson TB, Nierenberg K, Aubel M, LePrell R, Chapman A, Foss A, Corum S, Hill VR, Kieszak SM, Cheng Y-S (2009) Recreational exposure to microcystins during algal blooms in two California lakes. Toxicon:1–13

  • Bannack SA, Murch SJ (2009) Multiple neurotoxic items in the Chamorro diet link BMAA with ALS/PDC. Amyotroph Lateral Scler 10:34–40

    Article  Google Scholar 

  • Brand LE (2009) Human exposure to cyanobacteria and BMAA. Amyotroph Lateral Scler 10:85–95

    Article  CAS  PubMed  Google Scholar 

  • Brand LE, Pablo J, Compton A, Hammerschlag N, Mash DC (2010) Cyanobacterial blooms and the occurrence of the neurotoxin, beta-N-methylamino-L-alanine (BMAA), in South Florida aquatic food webs. Harmful Algae 9(6):620–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caller TA, Doolin JW, Haney JF, Murby AJ, West KG, Farrar HE, Ball A, Harris BT, Stommel EW (2009) A cluster of amyotrophic lateral sclerosis in New Hampshire: a possible role for toxic cyanobacterial blooms. Amyotroph Lateral Scler 10(2):101–108

    Article  CAS  PubMed  Google Scholar 

  • Cheng YS, Zhou Y, Irvin CM, Kirkpatrick B, Backer LC (2007) Characterization of aerosols containing microcystin. Marine Drugs 5:136–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contardo-Jara V, Schwanemann T, Pflugmacher S (2014) Uptake of a cyanotoxin β-N-methylamino-L-alanine (BMAA), by wheat (Triticum aestivum). Ecotoxicol Environ Saf 104:127–131

    Article  CAS  PubMed  Google Scholar 

  • Cox PA, Sacks OW (2002) Cycad neurotoxins, consumption of flying foxes, and ALS-PDC disease in Guam. Neurology 58(6):956–959

    Article  PubMed  Google Scholar 

  • Cox PA, Banack SA, Murch SJ, Rasmussen U, Tien G, Bidigare RR, Metcalf JS, Morrison LF, Codd GA, Bergman B (2005) Diverse taxa of cyanobacteria produce β-N-methylamino-L-alanine, a neurotoxic amino acid. Proc Natl Acad Sci U S A 102:5074–5078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox PA, Richer R, Metcalf JS, Banack SA, Codd GA, Bradley WG (2009) Cyanobacteria and BMAA exposure from desert dust: a possible link to sporadic ALS among Gulf veterans. Amyotroph Lateral Scler 10:109–117

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Aguado R, Winkler D, Shaw CA (2006) Lack of behavioral and neuropathological effects of dietary b-methylamino-L-alanine (BMAA) in mice. Pharmacol Biochem Behav 84:294–299

    Article  CAS  PubMed  Google Scholar 

  • Dietrich DR, Fischer A, Michel C, Hoeger SJ (2008) Toxin mixture in cyanobacterial bloom – a critical comparisonof reality with current procedures employed in human health risk assessment. Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs Advances in Experimental Medicine and Biology 619:885–912

    Article  CAS  Google Scholar 

  • Downing S, Downing TG (2016) The metabolism of the non-proteinogenic amino acid b-N- methylamino-L-alanine (BMAA) in the cyanobacterium Synechocystis PCC6803. Toxicon 115:41–48

    Article  CAS  PubMed  Google Scholar 

  • Downing S, Contardo-Jara V, Pflugmacher S, Downing TG (2014) The fate of the cyanobacterial toxin β-N-methylamino-L-alanine in freshwater mussels. Ecotoxicol Environ Saf 101:51–58

    Article  CAS  PubMed  Google Scholar 

  • Duncan MW, Villacreses NE, Pearson PG, Wyatt L, Rapoport SI, Kopin IJ, Markey SP, Smith QR (1991) 2-amino-3-(methylamino)-propanoic acid (BMAA) pharmacokinetics and blood–brain barrier permeability in the rat. J Pharmacol Exp Ther 258:27–35

    CAS  PubMed  Google Scholar 

  • Duncan MW, Markey SP, Weick BG, Pearson PG, Ziffer H, Hu Y, Kopin IJ (1992) 2-amino-3-(methylamino)propanoic acid (BMAA) bioavailability in the primate. Neurobio Aging 13:333–337

    Article  CAS  Google Scholar 

  • Haley RW (2003) Excess incidence of ALS in young Gulf war veterans. Neurology 61:750–756

    Article  PubMed  Google Scholar 

  • Horner RD, Kamins KG, Feussner JR, Grambow SC, Hoff-Lindquist J, Harati Y (2003) Occurrence of amyotrophic lateral sclerosis among Gulf war veterans. Neuro 61:742–749

    Article  CAS  Google Scholar 

  • Horner RD, Grambow SC, Coffman CJ, Lindquist JH, Oddone EZ, Allen KD (2008) Amyotrophic lateral sclerosis among 1991 Gulf war veterans: evidence for a time-limited outbreak. Neuroepidemiology 31:28–32

    Article  PubMed  Google Scholar 

  • Jiang L, Kiselova N, Rosén J, Ilag LL (2014) Quantification of neurotoxin BMAA (β-N-methylamino-L-alanine) in seafood from Swedish markets. Scientific reports 4:6931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson HE, King SR, Banack SA, Webster C, Callanaupa WJ, Cox PA (2008) Cyanobacteria (Nostoc commune) used as a dietary item in the Peruvian highlands produce the neurotoxic amino acid BMAA. J Ethnopharmacol 118(1):159–165

    Article  CAS  PubMed  Google Scholar 

  • Jonasson S, Eriksson J, Berntzon L, Spáčil Z, Ilag LL, Ronnevi L-O, Rasmussen U, Bergman B (2010) Transfer of a cyanobacterial neurotoxin within a temperate aquatic ecosystem suggests pathways for human exposure. Proc Natl Acad Sci U S A 107(20):9252–9257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlsson O, Berg C, Brittebo EB, Lindquist NG (2008) Retention of the cyanobacterial neurotoxin b-N-methylamino-L-alanine in melanin and neuromelanin-containing cells – a possible link between Parkinson-dementia complex and pigmentary retinopathy. Pigment Cell Melanoma Res 22:120–130

    Article  Google Scholar 

  • Karlsson O, Lindquist NG, Brittebo EB, Roman E (2009) Selective brain uptake and behavioral effects of the cyanobacterial toxin BMAA (ß-N-methylamino-L-alanine) following neonatal administration to rodents. Toxicol Sciences 109(2):286–295

    Article  CAS  Google Scholar 

  • Karlsson O, Berg A-L, Lindstrom A-K, Arnerup G, Roman E, Bergquist J, Hanrieder J, Lindquist NG, Brittebo EB, Andersson M (2012) Neonatal exposure to the cyanobacterial toxin BMAA induces changes in protein expression, and neurodegeneration in adult hippocampus. Toxicol Sciences 130(2):391–404

    Article  CAS  Google Scholar 

  • Kastin AJ, Kuzemchak B, Tompkins RG, Schally AV, Millder MC (1976) Melanin in the rat brain. Brain Res Bull 1(6):567–572

    Article  CAS  PubMed  Google Scholar 

  • Kastin AJ, Kuzemchak B, Schally AV, Eggert MW (1979) Rat brain melanin at different ages and after various treatments. Brain Res Bull 4(6):793–797

    Article  CAS  PubMed  Google Scholar 

  • Kosenko E, Llansola M, Montolui C, Monfort P, Rodrigo R, Hernandez-Viadel M, Erceg S, Sanchez-Perez AM, Felipo V (2003) Glutamine synthetase activity and glutamine content in the brain: modulation by NMDA receptors and nitric oxide. Neurochem Int 43:493–499

    Article  CAS  PubMed  Google Scholar 

  • Lage S, Annadotter H, Rasmussen U, Rydberg S (2015) Biotransfer of β-N-methylamino-L-alanine (BMAA) in a Eutrophicated freshwater Lake. Mar Drugs 13(3):1185–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mondo L, Hammerschlag N, Basile M, Pablo J, Banack SA, Mash DC (2012) Cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) in shark fins. Mar Drugs 10(2):509–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mondo K, Glover BW, Murch SJ, Liu G, Cai Y, Davis DA, Mash DC (2014) Environmental neurotoxins β-N-methylamino-L-alanine (BMAA) and mercury in shark cartilage dietary supplements. Food Chem Toxicol 70:26–32

    Article  CAS  PubMed  Google Scholar 

  • Morris JG Jr (1999) Pfiesteria, ‘the cell from hell’, and other toxic algal nightmares. Clin Infect Dis 28:1191–1196

    Article  PubMed  Google Scholar 

  • Murch SJ, Cox PA, Banack SA (2004) A mechanism for slow release of biomagnified cyanobacterial toxins and neurodegenerative disease in Guam. Proc Natl Acad Sci 101:12228–12231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumiller JJ, Campbell RK, Wood LD (2010) A review of inhaled technosphere insulin. Ann Pharmacother 44(7–8):1231–1239

  • Nunn RB, Ponnusamy M (2009) BMAA: metabolism and metabolic effects in model systems and in neural and other tissues of the rat in vitro. Toxicon 54:85–94

    Article  CAS  PubMed  Google Scholar 

  • Patton JS, Byron PR (2007) Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov 6:67–74

    Article  CAS  PubMed  Google Scholar 

  • Perry TL, Bergeron C, Biro AJ, Hansen S (1989) Chronic oral administration of b-N-methylamino-L-alanine is not neurotoxic to mice. J Neurol Sci 94:173–180

    Article  CAS  PubMed  Google Scholar 

  • Pierce RH, Henry MS, Blum PC, Lyons J, Cheng YS, Yazzie D, Zhou Y (2003) Brevetoxin concentrations in marine aerosol: human exposure levels during a Karenia brevis Harmful algal bloom. Bull Environ Contam Toxicol 70(1):161–165

  • Polsky FI, Nunn PB, Bell EA (1972) Distribution and toxicity of aamino-b-methylaminopropionic acid. Fed Proc 31:1473–1475

    CAS  PubMed  Google Scholar 

  • Rao SD, Banack SA, Cox PA, Weiss JH (2006) BMAA selectively injures motor neurons via AMPA/kainite receptor activation. Exp neurology 201:244–252

    Article  CAS  Google Scholar 

  • Reece DM, Nunn PB (1989) Synthesis of 14C-labelled L-α-amino-β-methylaminopropionic acid and its metabolism in the rat. Biochem Soc Trans 17:203–204

    Article  CAS  Google Scholar 

  • Reveillon D, Abadie E, Sechet V, Masseret E, Hess P, Amzil Z (2015) β-N-methylamino-L-alanine (BMAA) and isomers: distribution on different food web compartments of Thau lagoon, French Mediterranean Sea. Mar Environ Res 110:8–18

    Article  CAS  PubMed  Google Scholar 

  • Reveillon D, Sechet V, Hess P, Amzil Z (2016) Systemic detection of BMAA (β-N-methylamino-L-alanine) and DAB (2,4-diaminobutyric acid) in mollusks collected in shellfish production areas along the French coasts. Toxicon 110:35–46

    Article  CAS  PubMed  Google Scholar 

  • Rosenstock J, Lorber DL, Gnudi L (2010) Prandial inhaled insulin plus insulin glargine versus twice daily biaspart insulin for type 2 diabetes:a multicentre randomized trial. Lancet 375:2244–2253

    Article  CAS  PubMed  Google Scholar 

  • Salem H, Katz SA (2006) Inhalation toxicology, Second edn. Taylor & Francis Group, USA

    Google Scholar 

  • Seawright AA, Brown AW, Nolan CC, Cavanagh JB (1990) Selective degeneration of cerebellar cortical neurons caused by cycad neurotoxin L-β-methylaminoalanine (BMAA), in rats. Neuropathol Appl Neurobiol 16:153–169

    Article  CAS  PubMed  Google Scholar 

  • Su X, Xue Q, Steinman AD, Zhao Y, Xie L (2015) Spatiotemporal dynamics of microcystin variants and relationships with environmental parameters in Lake Taihu, China. Toxins 7(8):3224–3244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takenaka S, Möller W, Semmler-Behnke M, Karg E, Wenk A, Schmid O, Stoeger T, Jennen L, Aichler M, Walch A, Pokhrel S, Mädler L, Eickelberg O, Kreyling WG (2012) Efficient internalization and intracellular translocation of inhaled gold nanoparticles in rat alveolar macrophages. Nanomedicine 7(6):855–865

  • Weiss JH, Christine CW, Choi DW (1989) Bicarbonate dependence of glutamate receptor activation by β-N-methylamino-L-alanine: channel recording and study with related compounds. Neuron 3:321–326

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the National Research Foundation of South Africa for financial support. The authors would also like to acknowledge Leopold Ilag and Nadezda Zguna of the Department of Environmental Science and Analytical Chemistry, Stockholm University, for the use of equipment used in environmental aerosol sample analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Grant Downing.

Ethics declarations

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Conflict of Interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scott, L.L., Downing, S. & Downing, T.G. The Evaluation of BMAA Inhalation as a Potential Exposure Route Using a rat Model. Neurotox Res 33, 6–14 (2018). https://doi.org/10.1007/s12640-017-9742-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-017-9742-9

Keywords

Navigation