Skip to main content

Advertisement

Log in

α-Ketoadipic Acid and α-Aminoadipic Acid Cause Disturbance of Glutamatergic Neurotransmission and Induction of Oxidative Stress In Vitro in Brain of Adolescent Rats

  • ORIGINAL ARTICLE
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Tissue accumulation of α-ketoadipic (KAA) and α-aminoadipic (AAA) acids is the biochemical hallmark of α-ketoadipic aciduria. This inborn error of metabolism is currently considered a biochemical phenotype with uncertain clinical significance. Considering that KAA and AAA are structurally similar to α-ketoglutarate and glutamate, respectively, we investigated the in vitro effects of these compounds on glutamatergic neurotransmission in the brain of adolescent rats. Bioenergetics and redox homeostasis were also investigated because they represent fundamental systems for brain development and functioning. We first observed that AAA significantly decreased glutamate uptake, whereas glutamate dehydrogenase activity was markedly inhibited by KAA in a competitive fashion. In addition, AAA and more markedly KAA induced generation of reactive oxygen and nitrogen species (increase of 2′,7′-dichloroflurescein (DCFH) oxidation and nitrite/nitrate levels), lipid peroxidation (increase of malondialdehyde concentrations), and protein oxidation (increase of carbonyl formation and decrease of sulfhydryl content), besides decreasing the antioxidant defenses (reduced glutathione (GSH)) and aconitase activity. Furthermore, KAA-induced lipid peroxidation and GSH decrease were prevented by the antioxidants α-tocopherol, melatonin, and resveratrol, suggesting the involvement of reactive species in these effects. Noteworthy, the classical inhibitor of NMDA glutamate receptors MK-801 was not able to prevent KAA-induced and AAA-induced oxidative stress, determined by DCFH oxidation and GSH levels, making unlikely a secondary induction of oxidative stress through overstimulation of glutamate receptors. In contrast, KAA and AAA did not significantly change brain bioenergetic parameters. We speculate that disturbance of glutamatergic neurotransmission and redox homeostasis by KAA and AAA may play a role in those cases of α-ketoadipic aciduria that display neurological symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akerman KE, Wikstrom MK (1976) Safranine as a probe of the mitochondrial membrane potential. FEBS Lett 68(2):191–197

    Article  CAS  PubMed  Google Scholar 

  • Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302(2–3):141–145

    Article  CAS  PubMed  Google Scholar 

  • Anisimov VN (2006) Premature ageing prevention: limitations and perspectives of pharmacological interventions. Curr Drug Targets 7(11):1485–1503

    Article  CAS  PubMed  Google Scholar 

  • Au A, Lam W, Tsang J, Yau TK, Soong I, Yeo W, Suen J, Ho WM, Wong KY, Kwong A, Suen D, Sze WK, Ng A, Girgis A, Fielding R (2013) Supportive care needs in Hong Kong Chinese women confronting advanced breast cancer. Psychooncology 22(5):1144–1151

    Article  PubMed  Google Scholar 

  • Bhandary B, Marahatta A, Kim HR, Chae HJ (2012) An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases. Int J Mol Sci 14(1):434–456

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brown DR, Kretzschmar HA (1998) The glio-toxic mechanism of alpha-aminoadipic acid on cultured astrocytes. J Neurocytol 27(2):109–118

    Article  CAS  PubMed  Google Scholar 

  • Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352

    CAS  PubMed  Google Scholar 

  • Castro L, Rodriguez M, Radi R (1994) Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide. J Biol Chem 269(47):29409–29415

    CAS  PubMed  Google Scholar 

  • Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2+-stimulated atpase activity. Anal Biochem 157(2):375–380

    Article  CAS  PubMed  Google Scholar 

  • Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48(6):749–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornish-Bowden A (1974) A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors. The Biochemical journal 137(1):143–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danhauser K, Sauer SW, Haack TB, Wieland T, Staufner C, Graf E, Zschocke J, Strom TM, Traub T, Okun JG, Meitinger T, Hoffmann GF, Prokisch H, Kolker S (2012) DHTKD1 mutations cause 2-aminoadipic and 2-oxoadipic aciduria. Am J Hum Genet 91(6):1082–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Meo S, Reed TT, Venditti P, Victor VM (2016) Role of ROS and RNS sources in physiological and pathological conditions. Oxidative Med Cell Longev 2016:1245049

    Google Scholar 

  • Dienel GA (2013) Astrocytic energetics during excitatory neurotransmission: what are contributions of glutamate oxidation and glycolysis? Neurochem Int 63(4):244–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominah GA, McMinimy RA, Kallon S, Kwakye GF (2017) Acute exposure to chlorpyrifos caused NADPH oxidase mediated oxidative stress and neurotoxicity in a striatal cell model of Huntington’s disease. Neurotoxicology. In press

  • Duran M, Beemer FA, Wadman SK, Wendel U, Janssen B (1984) A patient with alpha-ketoadipic and alpha-aminoadipic aciduria. J Inherit Metab Dis 7(2):61

    Article  CAS  PubMed  Google Scholar 

  • Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421

    Article  CAS  PubMed  Google Scholar 

  • Evelson P, Travacio M, Repetto M, Escobar J, Llesuy S, Lissi EA (2001) Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys 388(2):261–266

    Article  CAS  PubMed  Google Scholar 

  • Fellows FC, Lewis MH (1973) Lysine metabolism in mammals. The Biochemical journal 136(2):329–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenton WA, Gravel RA, Rosenblatt DS (2001) Disorders of propionate and methylmalonate metabolism. In: The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill Inc, New York

    Google Scholar 

  • Figueira TR, Melo DR, Vercesi AE, Castilho RF (2012) Safranine as a fluorescent probe for the evaluation of mitochondrial membrane potential in isolated organelles and permeabilized cells. Methods Mol Biol 810:103–117

    Article  CAS  PubMed  Google Scholar 

  • Fischer MH, Brown RR (1980) Tryptophan and lysine metabolism in alpha-aminoadipic aciduria. Am J Med Genet 5(1):35–41

    Article  CAS  PubMed  Google Scholar 

  • Fischer MH, Gerritsen T, Opitz JM (1974) Alpha-aminoadipic aciduria, a non-deleterious inborn metabolic defect. Humangenetik 24(4):265–270

    CAS  PubMed  Google Scholar 

  • Fischer JC, Ruitenbeek W, Berden JA, Trijbels JMF, Veerkamp JH, Stadhouders AM, Sengers RCA, Janssen AJM (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clinica chimica acta; international journal of clinical chemistry 153(1):23–36

    Article  CAS  PubMed  Google Scholar 

  • Frigerio F, Karaca M, De Roo M, Mlynarik V, Skytt DM, Carobbio S, Pajecka K, Waagepetersen HS, Gruetter R, Muller D, Maechler P (2012) Deletion of glutamate dehydrogenase 1 (Glud1) in the central nervous system affects glutamate handling without altering synaptic transmission. J Neurochem 123(3):342–348

    Article  CAS  PubMed  Google Scholar 

  • Frizzo ME, Lara DR, Prokopiuk Ade S, Vargas CR, Salbego CG, Wajner M, Souza DO (2002) Guanosine enhances glutamate uptake in brain cortical slices at normal and excitotoxic conditions. Cell Mol Neurobiol 22(3):353–363

    Article  CAS  PubMed  Google Scholar 

  • Funk CB, Prasad AN, Frosk P, Sauer S, Kolker S, Greenberg CR, Del Bigio MR (2005) Neuropathological, biochemical and molecular findings in a glutaric acidemia type 1 cohort. Brain 128(Pt 4):711–722

    Article  PubMed  Google Scholar 

  • Gardner PR (2002) Aconitase: sensitive target and measure of superoxide. Methods Enzymol 349:9–23

    Article  CAS  PubMed  Google Scholar 

  • Gardner PR, Fridovich I (1992) Inactivation-reactivation of aconitase in Escherichia coli. A sensitive measure of superoxide radical. J Biol Chem 267(13):8757–8763

    CAS  PubMed  Google Scholar 

  • Gardner PR, Fridovich I (1993) Effect of glutathione on aconitase in Escherichia coli. Arch Biochem Biophys 301(1):98–102

    Article  CAS  PubMed  Google Scholar 

  • Gardner PR, Raineri I, Epstein LB, White CW (1995) Superoxide radical and iron modulate aconitase activity in mammalian cells. J Biol Chem 270(22):13399–13405

    Article  CAS  PubMed  Google Scholar 

  • Gnaiger E (2009) Capacity of oxidative phosphorylation in human skeletal muscle: new perspectives of mitochondrial physiology. Int J Biochem Cell Biol 41(10):1837–1845

    Article  CAS  PubMed  Google Scholar 

  • Goodman SI, Duran M (2014) Biochemical phenotypes of questionable clinical significance. Physician’s guide to the diagnosis, treatment, and follow-up of inherited metabolic diseases, 1st edn. Springer, Heidelberg

    Google Scholar 

  • Hagen J, te Brinke H, Wanders RJ, Knegt AC, Oussoren E, Hoogeboom AJ, Ruijter GJ, Becker D, Schwab KO, Franke I, Duran M, Waterham HR, Sass JO, Houten SM (2015) Genetic basis of alpha-aminoadipic and alpha-ketoadipic aciduria. J Inherit Metab Dis 38(5):873–879

    Article  CAS  PubMed  Google Scholar 

  • Hallen A, Jamie JF, Cooper AJ (2013) Lysine metabolism in mammalian brain: an update on the importance of recent discoveries. Amino Acids 45(6):1249–1272

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Measurement of reactive species. Free radicals in biology and medicine, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  • Hoffmann GF, Kölker, S (2011) Cerebral organic acid disorders and other disorders of lysine catabolism. Inborn Metabolic Diseases, 5 edn., Heidelberg

  • Hoffmann GF, Seppel CK, Holmes B, Mitchell L, Christen HJ, Hanefeld F, Rating D, Nyhan WL (1993) Quantitative organic acid analysis in cerebrospinal fluid and plasma: reference values in a pediatric population. J Chromatogr 617(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Huck S, Grass F, Hortnagl H (1984) The glutamate analogue alpha-aminoadipic acid is taken up by astrocytes before exerting its gliotoxic effect in vitro. The Journal of neuroscience : the official journal of the Society for Neuroscience 4(10):2650–2657

    CAS  Google Scholar 

  • Hughes BP (1962) A method for estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathological sera. Clinica chimica acta; international journal of clinical chemistry 7(5):597–59&

    Article  CAS  PubMed  Google Scholar 

  • Jafari P, Braissant O, Bonafe L, Ballhausen D (2011) The unsolved puzzle of neuropathogenesis in glutaric aciduria type I. Mol Genet Metab 104(4):425–437

    Article  CAS  PubMed  Google Scholar 

  • Jones DH, Matus AI (1974) Isolation of synaptic plasma membrane from brain by combined flotation-sedimentation density gradient centrifugation. Biochim Biophys Acta 356(3):276–287

    Article  CAS  PubMed  Google Scholar 

  • Kolker S, Hoffmann GF, Schor DS, Feyh P, Wagner L, Jeffrey I, Pourfarzam M, Okun JG, Zschocke J, Baric I, Bain MD, Jakobs C, Chalmers RA (2003) Glutaryl-CoA dehydrogenase deficiency: region-specific analysis of organic acids and acylcarnitines in post mortem brain predicts vulnerability of the putamen. Neuropediatrics 34(5):253–260

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6(5):513–519

    Article  CAS  PubMed  Google Scholar 

  • LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5(2):227–231

    Article  CAS  PubMed  Google Scholar 

  • Leipnitz G, Seminotti B, Fernandes CG, Amaral AU, Beskow AP, da Silva LB, Zanatta A, Ribeiro CA, Vargas CR, Wajner M (2009) Striatum is more vulnerable to oxidative damage induced by the metabolites accumulating in 3-hydroxy-3-methylglutaryl-CoA lyase deficiency as compared to liver. Int J Dev Neurosci 27(4):351–356

    Article  CAS  PubMed  Google Scholar 

  • Levine RL, Williams JA, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357

    Article  CAS  PubMed  Google Scholar 

  • Liang LP, Waldbaum S, Rowley S, Huang TT, Day BJ, Patel M (2012) Mitochondrial oxidative stress and epilepsy in SOD2 deficient mice: attenuation by a lipophilic metalloporphyrin. Neurobiol Dis 45(3):1068–1076

    Article  CAS  PubMed  Google Scholar 

  • Lormans S, Lowenthal A (1974) Alpha-amino adipic aciduria in an oligophrenic child. Clinica chimica acta; international journal of clinical chemistry 57(1):97–101

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  • Ma MW, Wang J, Zhang Q, Wang R, Dhandapani KM, Vadlamudi RK, Brann DW (2017) NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener 12(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  • Maciel EN, Kowaltowski AJ, Schwalm FD, Rodrigues JM, Souza DO, Vercesi AE, Wajner M, Castilho RF (2004) Mitochondrial permeability transition in neuronal damage promoted by Ca2+ and respiratory chain complex II inhibition. J Neurochem 90(5):1025–1035

    Article  CAS  PubMed  Google Scholar 

  • McBean GJ (1990) Intrastriatal injection of DL-alpha-aminoadipate reduces kainate toxicity in vitro. Neuroscience 34(1):225–234

    Article  CAS  PubMed  Google Scholar 

  • McBean GJ (1994) Inhibition of the glutamate transporter and glial enzymes in rat striatum by the gliotoxin, alpha aminoadipate. Br J Pharmacol 113(2):536–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKenna MC (2011) Glutamate dehydrogenase in brain mitochondria: do lipid modifications and transient metabolon formation influence enzyme activity? Neurochem Int 59(4):525–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKenna MC (2013) Glutamate pays its own way in astrocytes. Front Endocrinol 4:191

    Article  Google Scholar 

  • Melo DR, Mirandola SR, Assuncao NA, Castilho RF (2012) Methylmalonate impairs mitochondrial respiration supported by NADH-linked substrates: involvement of mitochondrial glutamate metabolism. J Neurosci Res 90(6):1190–1199

    Article  CAS  PubMed  Google Scholar 

  • Mirandola SR, Melo DR, Schuck PF, Ferreira GC, Wajner M, Castilho RF (2008) Methylmalonate inhibits succinate-supported oxygen consumption by interfering with mitochondrial succinate uptake. J Inherit Metab Dis 31(1):44–54

    Article  CAS  PubMed  Google Scholar 

  • Mori N, Yasutake A, Hirayama K (2007) Comparative study of activities in reactive oxygen species production/defense system in mitochondria of rat brain and liver, and their susceptibility to methylmercury toxicity. Arch Toxicol 81(11):769–776

    Article  CAS  PubMed  Google Scholar 

  • Morrison JF (1954) The activation of aconitase by ferrous ions and reducing agents. Biochem J 58(4):685–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro-Gonzalvez JA, Garcia-Benayas C, Arenas J (1998) Semiautomated measurement of nitrate in biological fluids. Clin Chem 44(3):679–681

    CAS  PubMed  Google Scholar 

  • Niizuma K, Endo H, Chan PH (2009) Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. J Neurochem 109(Suppl 1):133–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nissen JD, Pajecka K, Stridh MH, Skytt DM, Waagepetersen HS (2015) Dysfunctional TCA-cycle metabolism in glutamate dehydrogenase deficient astrocytes. Glia 63(12):2313–2326

    Article  PubMed  Google Scholar 

  • Olney JW, de Gubareff T, Collins JF (1980) Stereospecificity of the gliotoxic and anti-neurotoxic actions of alpha-aminoadipate. Neurosci Lett 19(3):277–282

    Article  CAS  PubMed  Google Scholar 

  • Patel M (2004) Mitochondrial dysfunction and oxidative stress: cause and consequence of epileptic seizures. Free Radic Biol Med 37(12):1951–1962

    Article  CAS  PubMed  Google Scholar 

  • Pedersen OO, Karlsen RL (1979) Destruction of Muller cells in the adult rat by intravitreal injection of D,L-alpha-aminoadipic acid. An electron microscopic study Experimental eye research 28(5):569–575

    Article  CAS  PubMed  Google Scholar 

  • Petito CK, Chung MC, Verkhovsky LM, Cooper AJ (1992) Brain glutamine synthetase increases following cerebral ischemia in the rat. Brain Res 569(2):275–280

    Article  CAS  PubMed  Google Scholar 

  • Plaitakis A, Zaganas I (2001) Regulation of human glutamate dehydrogenases: implications for glutamate, ammonia and energy metabolism in brain. J Neurosci Res 66(5):899–908

    Article  CAS  PubMed  Google Scholar 

  • Przyrembel H, Bachmann D, Lombeck I, Becker K, Wendel U, Wadman SK, Bremer HJ (1975) Alpha-ketoadipic aciduria, a new inborn error of lysine metabolism; biochemical studies. Clinica chimica acta; international journal of clinical chemistry 58(3):257–269

    Article  CAS  PubMed  Google Scholar 

  • Rao MS, Reddy JK (1987) Peroxisome proliferation and hepatocarcinogenesis. Carcinogenesis 8(5):631–636

    Article  CAS  PubMed  Google Scholar 

  • Rao Y, Bodmer R, Jan LY, Jan YN (1992) The big brain gene of Drosophila functions to control the number of neuronal precursors in the peripheral nervous system. Development 116(1):31–40

    CAS  PubMed  Google Scholar 

  • Reiter RJ, Tan DX, Manchester LC, Qi W (2001) Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: a review of the evidence. Cell Biochem Biophys 34(2):237–256

    Article  CAS  PubMed  Google Scholar 

  • Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal RE, Hamud F, Fiskum G, Varghese PJ, Sharpe S (1987) Cerebral ischemia and reperfusion—prevention of brain mitochondrial injury by lidoflazine. J Cereb Blood Flow Metab 7(6):752–758

    Article  CAS  PubMed  Google Scholar 

  • Rustin P, Chretien D, Bourgeron T, Gerard B, Rotig A, Saudubray JM, Munnich A (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clinica chimica acta; international journal of clinical chemistry 228(1):35–51

    Article  CAS  PubMed  Google Scholar 

  • Saito A, Castilho RF (2010) Inhibitory effects of adenine nucleotides on brain mitochondrial permeability transition. Neurochem Res 35(11):1667–1674

    Article  CAS  PubMed  Google Scholar 

  • Sauer SW, Okun JG, Fricker G, Mahringer A, Muller I, Crnic LR, Muhlhausen C, Hoffmann GF, Horster F, Goodman SI, Harding CO, Koeller DM, Kolker S (2006) Intracerebral accumulation of glutaric and 3-hydroxyglutaric acids secondary to limited flux across the blood-brain barrier constitute a biochemical risk factor for neurodegeneration in glutaryl-CoA dehydrogenase deficiency. J Neurochem 97(3):899–910

    Article  CAS  PubMed  Google Scholar 

  • Schapira AHV, Mann VM, Cooper JM, Dexter D, Daniel SE, Jenner P, Clark JB, Marsden CD (1990) Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J Neurochem 55(6):2142–2145

    Article  CAS  PubMed  Google Scholar 

  • Stiles AR, Venturoni L, Mucci G, Elbalalesy N, Woontner M, Goodman S, Abdenur JE (2016) New cases of DHTKD1 mutations in patients with 2-ketoadipic aciduria. JIMD Rep 25:15–19

    Article  PubMed  Google Scholar 

  • Takechi T, Okada T, Wakiguchi H, Morita H, Kurashige T, Sugahara K, Kodama H (1993) Identification of N-acetyl-alpha-aminoadipic acid in the urine of a patient with alpha-aminoadipic and alpha-ketoadipic aciduria. J Inherit Metab Dis 16(1):119–126

    Article  CAS  PubMed  Google Scholar 

  • Tarla MR, Ramalho F, Ramalho LN, Silva Tde C, Brandao DF, Ferreira J, Silva Ode C, Zucoloto S (2006) Cellular aspects of liver regeneration. Acta cirurgica brasileira 21(Suppl 1):63–66

    Article  PubMed  Google Scholar 

  • Trotti D, Rossi D, Gjesdal O, Levy LM, Racagni G, Danbolt NC, Volterra A (1996) Peroxynitrite inhibits glutamate transporter subtypes. J Biol Chem 271(11):5976–5979

    Article  CAS  PubMed  Google Scholar 

  • Trotti D, Danbolt NC, Volterra A (1998) Glutamate transporters are oxidant-vulnerable: a molecular link between oxidative and excitotoxic neurodegeneration? Trends Pharmacol Sci 19(8):328–334

    Article  CAS  PubMed  Google Scholar 

  • Tsakiris S, Deliconstantinos G (1984) Influence of phosphatidylserine on (Na+,K+)-stimulated ATPase and acetylcholinesterase activities of dog brain synaptosomal plasma membranes. The Biochemical journal 220(1):301–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullensvang K, Lehre KP, Storm-Mathisen J, Danbolt NC (1997) Differential developmental expression of the two rat brain glutamate transporter proteins GLAST and GLT. Eur J Neurosci 9(8):1646–1655

    Article  CAS  PubMed  Google Scholar 

  • Volterra A, Trotti D, Tromba C, Floridi S, Racagni G (1994) Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. The Journal of neuroscience : the official journal of the Society for Neuroscience 14(5 Pt 1):2924–2932

    CAS  Google Scholar 

  • Wilcken B, Smith A, Brown DA (1980) Urine screening for aminoacidopathies: is it beneficial? Results of a long-term follow-up of cases detected bny screening one millon babies. J Pediatr 97(3):492–497

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Vincent AS, Halliwell B, Wong KP (2004) A mechanism of sulfite neurotoxicity: direct inhibition of glutamate dehydrogenase. J Biol Chem 279(41):43035–43045

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico #404883/2013-3, Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul #2266-2551/14-2, Pró-Reitoria de Pesquisa/Universidade Federal do Rio Grande do Sul #PIBIC 27613, and Financiadora de Estudos e Projetos/Rede Instituto Brasileiro de Neurociência # 01.06.0842-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moacir Wajner.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, J.C., Amaral, A.U., Cecatto, C. et al. α-Ketoadipic Acid and α-Aminoadipic Acid Cause Disturbance of Glutamatergic Neurotransmission and Induction of Oxidative Stress In Vitro in Brain of Adolescent Rats. Neurotox Res 32, 276–290 (2017). https://doi.org/10.1007/s12640-017-9735-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-017-9735-8

Keywords

Navigation