Skip to main content

Advertisement

Log in

TREM1: A Potential Therapeutic Target For Alzheimer’s Disease

  • COMMENTARY
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Immunity has been suggested to play crucial roles in the pathogenesis of Alzheimer’s disease (AD). The triggering receptor expressed on myeloid cells-1 (TREM1), a member of the immunoglobulin superfamily of receptors, is widely expressed in monocytes and microglia. On the other hand, TREM1 variant, rs6910730G, is reported to associate with AD pathology; however, the exact mechanism is not yet clear. Since phagocytosis of Aβ by monocytes enhances Aβ clearance and attenuates AD pathogenesis, Jiang et al. has investigated if TREM1 can modulate Aβ phagocytosis and degradation by monocytes in the central nervous system (CNS). They found that TREM1 facilitates microglial Aβ phagocytosis while rs6910730G impairs this function and exacerbates AD pathogenesis. These findings suggest that TREM1 can be implemented investigated as a potential therapeutic target in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bailey CC, DeVaux LB, Farzan M (2015) The triggering receptor expressed on myeloid cells 2 binds apolipoprotein E. J Biol Chem 290:26033–26042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benitez BA, Cooper B, Pastor P, Jin SC, Lorenzo E, Cervantes S et al (2013) TREM2 is associated with the risk of Alzheimer’s disease in Spanish population. Neurobiol Aging 34(1711):e1715–e1717

    Google Scholar 

  • Bouchon A, Dietrich J, Colonna M (2000) Cutting edge: inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J Immunol 164:4991–4995

    Article  CAS  PubMed  Google Scholar 

  • Chan G, White CC, Winn PA, Cimpean M, Replogle JM, Glick LR et al (2015) CD33 modulates TREM2: convergence of Alzheimer loci. Nat Neurosci 18:1556–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuyvers E, Bettens K, Philtjens S, Van Langenhove T, Gijselinck I, van der Zee J et al (2014) Investigating the role of rare heterozygous TREM2 variants in Alzheimer’s disease and frontotemporal dementia. Neurobiol Aging 35(726):e711–e729

    Google Scholar 

  • Deane R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E et al (2003) RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med 9:907–913

    Article  CAS  PubMed  Google Scholar 

  • Franco R, Fernandez-Suarez D (2015) Alternatively activated microglia and macrophages in the central nervous system. Prog Neurobiol 131:65–86

    Article  CAS  PubMed  Google Scholar 

  • Ghersi-Egea JF, Gorevic PD, Ghiso J, Frangione B, Patlak CS, Fenstermacher JD (1996) Fate of cerebrospinal fluid-borne amyloid beta-peptide: rapid clearance into blood and appreciable accumulation by cerebral arteries. J Neurochem 67:880–883

    Article  CAS  PubMed  Google Scholar 

  • Guerreiro R, Hardy J (2013) TREM2 and neurodegenerative disease. N Engl J Med 369:1569–1570

    CAS  PubMed  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  PubMed  Google Scholar 

  • Iwata N, Tsubuki S, Takaki Y, Watanabe K, Sekiguchi M, Hosoki E et al (2000) Identification of the major Abeta1-42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nat Med 6:143–150

    Article  CAS  PubMed  Google Scholar 

  • Jiang T, Tan L, Chen Q, Tan MS, Zhou JS, Zhu XC et al (2016a) A rare coding variant in TREM2 increases risk for Alzheimer’s disease in Han Chinese. Neurobiol Aging 42(217):e211–e213

    Google Scholar 

  • Jiang T, Zhang YD, Gao Q, Zhou JS, Zhu XC, Lu H, et al. (2016b). TREM1 facilitates microglial phagocytosis of amyloid beta. Acta neuropathologica

  • Jin SC, Benitez BA, Karch CM, Cooper B, Skorupa T, Carrell D et al (2014) Coding variants in TREM2 increase risk for Alzheimer’s disease. Hum Mol Genet 23:5838–5846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J et al (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368:107–116

    Article  CAS  PubMed  Google Scholar 

  • Kadiu I, Glanzer JG, Kipnis J, Gendelman HE, Thomas MP (2005) Mononuclear phagocytes in the pathogenesis of neurodegenerative diseases. Neurotox Res 8:25–50

    Article  CAS  PubMed  Google Scholar 

  • Klesney-Tait J, Turnbull IR, Colonna M (2006) The TREM receptor family and signal integration. Nat Immunol 7:1266–1273

    Article  CAS  PubMed  Google Scholar 

  • Malm T, Koistinaho M, Muona A, Magga J, Koistinaho J (2010) The role and therapeutic potential of monocytic cells in Alzheimer’s disease. Glia 58:889–900

    PubMed  Google Scholar 

  • Mandrekar S, Jiang Q, Lee CY, Koenigsknecht-Talboo J, Holtzman DM, Landreth GE (2009) Microglia mediate the clearance of soluble Abeta through fluid phase macropinocytosis. J Neurosci 29:4252–4262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meda L, Baron P, Scarlato G (2001) Glial activation in Alzheimer’s disease: the role of Abeta and its associated proteins. Neurobiol Aging 22:885–893

    Article  CAS  PubMed  Google Scholar 

  • Pottier C, Wallon D, Rousseau S, Rovelet-Lecrux A, Richard AC, Rollin-Sillaire A et al (2013) TREM2 R47H variant as a risk factor for early-onset Alzheimer’s disease. J Alzheimers Dis 35:45–49

    CAS  PubMed  Google Scholar 

  • Replogle JM, Chan G, White CC, Raj T, Winn PA, Evans DA et al (2015) A TREM1 variant alters the accumulation of Alzheimer-related amyloid pathology. Ann Neurol 77:469–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B et al (2000) Clearance of Alzheimer’s amyloid-ss(1–40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest 106:1489–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swerdlow RH (2012) Alzheimer’s disease pathologic cascades: who comes first, what drives what. Neurotox Res 22:182–194

    Article  PubMed  Google Scholar 

  • Wang Y, Cella M, Mallinson K, Ulrich JD, Young KL, Robinette ML et al (2015) TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160:1061–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang Y, Bu XL, Liu YH, Zhu C, Shen LL, Jiao SS et al (2015) Physiological amyloid-beta clearance in the periphery and its therapeutic potential for Alzheimer’s disease. Acta Neuropathol 130:487–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan P, Condello C, Keene CD, Wang Y, Bird TD, Paul SM et al (2016) TREM2 Haplodeficiency in mice and humans impairs the microglia barrier function leading to decreased amyloid compaction and severe axonal dystrophy. Neuron 90:724–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zlokovic BV (2004) Clearing amyloid through the blood-brain barrier. J Neurochem 89:807–811

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalil Saadipour.

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saadipour, K. TREM1: A Potential Therapeutic Target For Alzheimer’s Disease. Neurotox Res 32, 14–16 (2017). https://doi.org/10.1007/s12640-017-9716-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-017-9716-y

Keywords

Navigation